{"title":"流体端块:基于真实材料模型的自增强和再自增强数值分析","authors":"Zhong Hu, A. P. Parker","doi":"10.1115/1.4056605","DOIUrl":null,"url":null,"abstract":"\n Fluid end blocks (FEBs) are the most important components of hydraulic fracturing pumps. A potential important application of the hydraulic autofrettage process (HAP) is to strengthen the fatigue-prone FEBs. This creates a favorable compressive residual stress field near to the critical surface locations within the component and serves to increase its pressure-bearing capacity and/or improve lifetime. This requires a fundamental understanding and modeling of the complex mechanics of the HAP in order to accurately predict such residual stresses. The key outstanding modeling issue is the complex material behavior, dominated by the Bauschinger effect and associated with reversed yielding. This effect differs throughout the FEB. It has been modeled for plane axisymmetric cylinders but has not previously been incorporated into FEB analyses. In this paper, a newly developed finite element analysis (FEA)-based user programmable function (UPF), featuring true material constitutive behavior, i.e., replicating an existing Bauschinger-effect characterization (BEC), is adopted to accurately simulate the HAP and quantitatively investigate the stress-strain evolution and residual stress fields throughout the FEB. This simulation is then compared with FEA modeling by a traditional bilinear kinematic hardening material model to indicate the importance of the accuracy of the material constitutive model in determining appropriate residual stresses and strains. An autofrettage pressure of 500MPa generally achieves net compressive hoop stresses at each of four critical crossbore location. Finally, a prospective re-autofrettage sequence is described; approximate modeling suggests an improvement that might permit operation at higher working pressure.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid End Blocks: Numerical Analysis of Autofrettage and Reautofrettage Based Upon A True Material Model\",\"authors\":\"Zhong Hu, A. P. Parker\",\"doi\":\"10.1115/1.4056605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fluid end blocks (FEBs) are the most important components of hydraulic fracturing pumps. A potential important application of the hydraulic autofrettage process (HAP) is to strengthen the fatigue-prone FEBs. This creates a favorable compressive residual stress field near to the critical surface locations within the component and serves to increase its pressure-bearing capacity and/or improve lifetime. This requires a fundamental understanding and modeling of the complex mechanics of the HAP in order to accurately predict such residual stresses. The key outstanding modeling issue is the complex material behavior, dominated by the Bauschinger effect and associated with reversed yielding. This effect differs throughout the FEB. It has been modeled for plane axisymmetric cylinders but has not previously been incorporated into FEB analyses. In this paper, a newly developed finite element analysis (FEA)-based user programmable function (UPF), featuring true material constitutive behavior, i.e., replicating an existing Bauschinger-effect characterization (BEC), is adopted to accurately simulate the HAP and quantitatively investigate the stress-strain evolution and residual stress fields throughout the FEB. This simulation is then compared with FEA modeling by a traditional bilinear kinematic hardening material model to indicate the importance of the accuracy of the material constitutive model in determining appropriate residual stresses and strains. An autofrettage pressure of 500MPa generally achieves net compressive hoop stresses at each of four critical crossbore location. Finally, a prospective re-autofrettage sequence is described; approximate modeling suggests an improvement that might permit operation at higher working pressure.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056605\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056605","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Fluid End Blocks: Numerical Analysis of Autofrettage and Reautofrettage Based Upon A True Material Model
Fluid end blocks (FEBs) are the most important components of hydraulic fracturing pumps. A potential important application of the hydraulic autofrettage process (HAP) is to strengthen the fatigue-prone FEBs. This creates a favorable compressive residual stress field near to the critical surface locations within the component and serves to increase its pressure-bearing capacity and/or improve lifetime. This requires a fundamental understanding and modeling of the complex mechanics of the HAP in order to accurately predict such residual stresses. The key outstanding modeling issue is the complex material behavior, dominated by the Bauschinger effect and associated with reversed yielding. This effect differs throughout the FEB. It has been modeled for plane axisymmetric cylinders but has not previously been incorporated into FEB analyses. In this paper, a newly developed finite element analysis (FEA)-based user programmable function (UPF), featuring true material constitutive behavior, i.e., replicating an existing Bauschinger-effect characterization (BEC), is adopted to accurately simulate the HAP and quantitatively investigate the stress-strain evolution and residual stress fields throughout the FEB. This simulation is then compared with FEA modeling by a traditional bilinear kinematic hardening material model to indicate the importance of the accuracy of the material constitutive model in determining appropriate residual stresses and strains. An autofrettage pressure of 500MPa generally achieves net compressive hoop stresses at each of four critical crossbore location. Finally, a prospective re-autofrettage sequence is described; approximate modeling suggests an improvement that might permit operation at higher working pressure.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.