用于5G nR和LTE 42频段智能手机的增强型隔离8单元MIMO天线设计

IF 1.2 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Antennas and Propagation Pub Date : 2023-06-30 DOI:10.1155/2023/7157515
Zhiwei Song, Hongxiang Miao, Xiaoming Xu, Lu Wang
{"title":"用于5G nR和LTE 42频段智能手机的增强型隔离8单元MIMO天线设计","authors":"Zhiwei Song, Hongxiang Miao, Xiaoming Xu, Lu Wang","doi":"10.1155/2023/7157515","DOIUrl":null,"url":null,"abstract":"A miniaturized enhanced isolation 8-unit MIMO antenna for smartphones is proposed in this paper. The units are planar inverted-F antennas with the same structure, and we use the slotting method and shorted probe to miniaturize them. The size of every unit is 14 × 6 mm2 (0.149 × 0.064λ2). We insert an L-shaped decoupling element into the middle of adjacent radiating elements and connect the decoupling element to the GND. Note that the decoupling elements are on the outer side of the substrate, and the radiating elements are on the inner side of the substrate. Finally, a prototype is fabricated and measured. The measured results show that the bandwidth of the MIMO antenna is from 3.0 GHz to 5.3 GHz (55.4%), which fully supports the n77, n78, and n79 in the 5G nR frequency band and the 4G LTE 42 frequency band (S11 less than −6 dB). The measured isolation of the MIMO antenna is greater than 25 dB by using the decoupling method in this paper. The envelope correlation coefficient of the proposed MIMO antenna is less than 0.08, its radiation efficiency is greater than 50%, and its gain is between 4.2 and 5.3 dBi in the whole operating frequency band.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of an Enhanced Isolation 8-Unit MIMO Antenna for Smartphones Operating in 5G nR and LTE 42 Bands\",\"authors\":\"Zhiwei Song, Hongxiang Miao, Xiaoming Xu, Lu Wang\",\"doi\":\"10.1155/2023/7157515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A miniaturized enhanced isolation 8-unit MIMO antenna for smartphones is proposed in this paper. The units are planar inverted-F antennas with the same structure, and we use the slotting method and shorted probe to miniaturize them. The size of every unit is 14 × 6 mm2 (0.149 × 0.064λ2). We insert an L-shaped decoupling element into the middle of adjacent radiating elements and connect the decoupling element to the GND. Note that the decoupling elements are on the outer side of the substrate, and the radiating elements are on the inner side of the substrate. Finally, a prototype is fabricated and measured. The measured results show that the bandwidth of the MIMO antenna is from 3.0 GHz to 5.3 GHz (55.4%), which fully supports the n77, n78, and n79 in the 5G nR frequency band and the 4G LTE 42 frequency band (S11 less than −6 dB). The measured isolation of the MIMO antenna is greater than 25 dB by using the decoupling method in this paper. The envelope correlation coefficient of the proposed MIMO antenna is less than 0.08, its radiation efficiency is greater than 50%, and its gain is between 4.2 and 5.3 dBi in the whole operating frequency band.\",\"PeriodicalId\":54392,\"journal\":{\"name\":\"International Journal of Antennas and Propagation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7157515\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/7157515","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于智能手机的小型化增强隔离8单元MIMO天线。这些单元是具有相同结构的平面倒F天线,我们使用开槽法和短探针将它们小型化。每个单元的大小是14 × 6. mm2(0.149 × 0.064λ2)。我们将L形去耦元件插入相邻辐射元件的中间,并将去耦元件连接到GND。注意,去耦元件在基板的外侧,而辐射元件在基板内侧。最后,制作了样机并进行了测试。测量结果表明,MIMO天线的带宽为3.0 GHz至5.3 GHz(55.4%),完全支持5G nR频带和4G LTE 42频带中的n77、n78和n79(S11小于−6 dB)。测量的MIMO天线的隔离度大于25 dB。所提出的MIMO天线的包络相关系数小于0.08,辐射效率大于50%,增益在4.2到5.3之间 dBi。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of an Enhanced Isolation 8-Unit MIMO Antenna for Smartphones Operating in 5G nR and LTE 42 Bands
A miniaturized enhanced isolation 8-unit MIMO antenna for smartphones is proposed in this paper. The units are planar inverted-F antennas with the same structure, and we use the slotting method and shorted probe to miniaturize them. The size of every unit is 14 × 6 mm2 (0.149 × 0.064λ2). We insert an L-shaped decoupling element into the middle of adjacent radiating elements and connect the decoupling element to the GND. Note that the decoupling elements are on the outer side of the substrate, and the radiating elements are on the inner side of the substrate. Finally, a prototype is fabricated and measured. The measured results show that the bandwidth of the MIMO antenna is from 3.0 GHz to 5.3 GHz (55.4%), which fully supports the n77, n78, and n79 in the 5G nR frequency band and the 4G LTE 42 frequency band (S11 less than −6 dB). The measured isolation of the MIMO antenna is greater than 25 dB by using the decoupling method in this paper. The envelope correlation coefficient of the proposed MIMO antenna is less than 0.08, its radiation efficiency is greater than 50%, and its gain is between 4.2 and 5.3 dBi in the whole operating frequency band.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Antennas and Propagation
International Journal of Antennas and Propagation ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.10
自引率
13.30%
发文量
158
审稿时长
3.8 months
期刊介绍: International Journal of Antennas and Propagation publishes papers on the design, analysis, and applications of antennas, along with theoretical and practical studies relating the propagation of electromagnetic waves at all relevant frequencies, through space, air, and other media. As well as original research, the International Journal of Antennas and Propagation also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Measurement of High-Power Microwave Impulse Response Characteristics of Reflector Materials A Simultaneous Study on Wire-Loop, Plate-Loop, and Plate Antennas for Wideband Circular Polarization Extracting Pole Characteristics of Complex Radar Targets for the Aircraft in Resonance Region Using RMSPSO_ARMA Safety Assessment of Electromagnetic Environmental Exposure for GPS Antenna of Electric Vehicle Design of the Monopulse Feeding Network for a Slotted Waveguide Array on an Annular Disk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1