径向温差作用下液膜轴对称流动结构

IF 2.2 3区 工程技术 Q2 MECHANICS Theoretical and Computational Fluid Dynamics Pub Date : 2022-08-10 DOI:10.1007/s00162-022-00624-z
Jungeng Fan, Ruquan Liang
{"title":"径向温差作用下液膜轴对称流动结构","authors":"Jungeng Fan,&nbsp;Ruquan Liang","doi":"10.1007/s00162-022-00624-z","DOIUrl":null,"url":null,"abstract":"<p>Motivated by recent advances in the development of the numerical calculation of fine flow in liquid film, the thermocapillary convection in thin liquid film (1mm) due to temperature difference is studied in this paper. To describe the formation of the thermocapillary convection on gas-liquid interface, a two-phase system was designed, in which the momentum and energy interact directly through the free surface. The finite volume method is used to solve the N-S equation in gas phase and liquid phase, respectively, and the velocity and temperature information are exchanged on the free surface in each time step. The results show that a thermocapillary wave appears in the liquid film when the temperature difference exceeds a certain value. The temperature and velocity fluctuations on the free surface show a radiation shape. The flow field structure is completely symmetrical in the basic state, but it is axisymmetric in the case of oscillation state. The propagation direction of thermocapillary wave is affected by many factors (ambient temperature or inner wall rotation). The wave propagation direction is consistent with the rotation direction when the inner wall rotates. When the angular velocity of inner wall rotation is 8 rad/s, the wave number of thermocapillary wave will be reduced to 3, which is independent of the rotation direction.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axisymmetric flow structure of thin liquid film under radial temperature difference\",\"authors\":\"Jungeng Fan,&nbsp;Ruquan Liang\",\"doi\":\"10.1007/s00162-022-00624-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by recent advances in the development of the numerical calculation of fine flow in liquid film, the thermocapillary convection in thin liquid film (1mm) due to temperature difference is studied in this paper. To describe the formation of the thermocapillary convection on gas-liquid interface, a two-phase system was designed, in which the momentum and energy interact directly through the free surface. The finite volume method is used to solve the N-S equation in gas phase and liquid phase, respectively, and the velocity and temperature information are exchanged on the free surface in each time step. The results show that a thermocapillary wave appears in the liquid film when the temperature difference exceeds a certain value. The temperature and velocity fluctuations on the free surface show a radiation shape. The flow field structure is completely symmetrical in the basic state, but it is axisymmetric in the case of oscillation state. The propagation direction of thermocapillary wave is affected by many factors (ambient temperature or inner wall rotation). The wave propagation direction is consistent with the rotation direction when the inner wall rotates. When the angular velocity of inner wall rotation is 8 rad/s, the wave number of thermocapillary wave will be reduced to 3, which is independent of the rotation direction.</p>\",\"PeriodicalId\":795,\"journal\":{\"name\":\"Theoretical and Computational Fluid Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00162-022-00624-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-022-00624-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

基于液膜内细流数值计算的最新进展,本文研究了1mm厚的液膜内由于温差引起的热毛细对流。为了描述气液界面上热毛细对流的形成,设计了动量和能量通过自由表面直接相互作用的两相系统。采用有限体积法分别求解气相和液相的N-S方程,并在自由表面上交换各时间步长的速度和温度信息。结果表明,当温差超过一定值时,液膜中出现热毛细波。自由表面的温度和速度波动呈辐射状。流场结构在基本状态下是完全对称的,而在振荡状态下是轴对称的。热毛细波的传播方向受多种因素(环境温度或内壁旋转)的影响。当内壁旋转时,波的传播方向与旋转方向一致。当内壁旋转角速度为8 rad/s时,热毛细波波数减少为3,且与旋转方向无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Axisymmetric flow structure of thin liquid film under radial temperature difference

Motivated by recent advances in the development of the numerical calculation of fine flow in liquid film, the thermocapillary convection in thin liquid film (1mm) due to temperature difference is studied in this paper. To describe the formation of the thermocapillary convection on gas-liquid interface, a two-phase system was designed, in which the momentum and energy interact directly through the free surface. The finite volume method is used to solve the N-S equation in gas phase and liquid phase, respectively, and the velocity and temperature information are exchanged on the free surface in each time step. The results show that a thermocapillary wave appears in the liquid film when the temperature difference exceeds a certain value. The temperature and velocity fluctuations on the free surface show a radiation shape. The flow field structure is completely symmetrical in the basic state, but it is axisymmetric in the case of oscillation state. The propagation direction of thermocapillary wave is affected by many factors (ambient temperature or inner wall rotation). The wave propagation direction is consistent with the rotation direction when the inner wall rotates. When the angular velocity of inner wall rotation is 8 rad/s, the wave number of thermocapillary wave will be reduced to 3, which is independent of the rotation direction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
2.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.
期刊最新文献
Long wavelength analysis amendment on the cilia beating assisted peristalsis in a tube Wave reflections and resonance in a Mach 0.9 turbulent jet Extended cluster-based network modeling for coherent structures in turbulent flows Proper orthogonal decomposition reduced-order model of the global oceans A hybrid method for aeroacoustic computation of moving rigid bodies in low Mach number flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1