{"title":"声流体应用的交叉换能器设计","authors":"Shuren Song, Qi Wang, Jia Zhou, A. Riaud","doi":"10.1063/10.0013405","DOIUrl":null,"url":null,"abstract":"Interdigitated transducers (IDTs) were originally designed as delay lines for radars. Half a century later, they have found new life as actuators for microfluidic systems. By generating strong acoustic fields, they trigger nonlinear effects that enable pumping and mixing of fluids, and moving particles without contact. However, the transition from signal processing to actuators comes with a range of challenges concerning power density and spatial resolution that have spurred exciting developments in solid-state acoustics and especially in IDT design. Assuming some familiarity with acoustofluidics, this paper aims to provide a tutorial for IDT design and characterization for the purpose of acoustofluidic actuation. It is targeted at a diverse audience of researchers in various fields, including fluid mechanics, acoustics, and microelectronics.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design of interdigitated transducers for acoustofluidic applications\",\"authors\":\"Shuren Song, Qi Wang, Jia Zhou, A. Riaud\",\"doi\":\"10.1063/10.0013405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interdigitated transducers (IDTs) were originally designed as delay lines for radars. Half a century later, they have found new life as actuators for microfluidic systems. By generating strong acoustic fields, they trigger nonlinear effects that enable pumping and mixing of fluids, and moving particles without contact. However, the transition from signal processing to actuators comes with a range of challenges concerning power density and spatial resolution that have spurred exciting developments in solid-state acoustics and especially in IDT design. Assuming some familiarity with acoustofluidics, this paper aims to provide a tutorial for IDT design and characterization for the purpose of acoustofluidic actuation. It is targeted at a diverse audience of researchers in various fields, including fluid mechanics, acoustics, and microelectronics.\",\"PeriodicalId\":35428,\"journal\":{\"name\":\"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0013405\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0013405","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Design of interdigitated transducers for acoustofluidic applications
Interdigitated transducers (IDTs) were originally designed as delay lines for radars. Half a century later, they have found new life as actuators for microfluidic systems. By generating strong acoustic fields, they trigger nonlinear effects that enable pumping and mixing of fluids, and moving particles without contact. However, the transition from signal processing to actuators comes with a range of challenges concerning power density and spatial resolution that have spurred exciting developments in solid-state acoustics and especially in IDT design. Assuming some familiarity with acoustofluidics, this paper aims to provide a tutorial for IDT design and characterization for the purpose of acoustofluidic actuation. It is targeted at a diverse audience of researchers in various fields, including fluid mechanics, acoustics, and microelectronics.