{"title":"考虑流固耦合的AP1000盾构试验与数值研究","authors":"Zhi Zhang, Chenning Song, Zhining Duan, Zhi-yuan Cheng","doi":"10.1155/2022/6458549","DOIUrl":null,"url":null,"abstract":"The gravity cooling water tank is a remarkable structural feature of third-generation pressurized water reactor nuclear power plant. To investigate the influence of fluid-structure interaction (FSI) on the seismic response of the structure, this study designed two 1 : 50 simplified models of the AP1000 shield building. A series of shaking table tests were conducted to study the seismic responses with and without FSI effect. The natural frequency, acceleration, strain, and hydrodynamic pressure of the two models were analyzed, and the seismic reduction effect of the water tank was evaluated. Moreover, the test data were compared with the results of numerical analysis using the ABAQUS software. The results show that the presence of water and the sloshing of water reduce the natural frequency and seismic response of the model structure. Thus, the gravity cooling water tank has a certain seismic reduction effect. The simplified model of water sloshing can be used to analyze the seismic response of the shield building.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Numerical Studies of AP1000 Shield Building considering Fluid-Structure Interaction\",\"authors\":\"Zhi Zhang, Chenning Song, Zhining Duan, Zhi-yuan Cheng\",\"doi\":\"10.1155/2022/6458549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gravity cooling water tank is a remarkable structural feature of third-generation pressurized water reactor nuclear power plant. To investigate the influence of fluid-structure interaction (FSI) on the seismic response of the structure, this study designed two 1 : 50 simplified models of the AP1000 shield building. A series of shaking table tests were conducted to study the seismic responses with and without FSI effect. The natural frequency, acceleration, strain, and hydrodynamic pressure of the two models were analyzed, and the seismic reduction effect of the water tank was evaluated. Moreover, the test data were compared with the results of numerical analysis using the ABAQUS software. The results show that the presence of water and the sloshing of water reduce the natural frequency and seismic response of the model structure. Thus, the gravity cooling water tank has a certain seismic reduction effect. The simplified model of water sloshing can be used to analyze the seismic response of the shield building.\",\"PeriodicalId\":21629,\"journal\":{\"name\":\"Science and Technology of Nuclear Installations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Nuclear Installations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6458549\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/6458549","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Experimental and Numerical Studies of AP1000 Shield Building considering Fluid-Structure Interaction
The gravity cooling water tank is a remarkable structural feature of third-generation pressurized water reactor nuclear power plant. To investigate the influence of fluid-structure interaction (FSI) on the seismic response of the structure, this study designed two 1 : 50 simplified models of the AP1000 shield building. A series of shaking table tests were conducted to study the seismic responses with and without FSI effect. The natural frequency, acceleration, strain, and hydrodynamic pressure of the two models were analyzed, and the seismic reduction effect of the water tank was evaluated. Moreover, the test data were compared with the results of numerical analysis using the ABAQUS software. The results show that the presence of water and the sloshing of water reduce the natural frequency and seismic response of the model structure. Thus, the gravity cooling water tank has a certain seismic reduction effect. The simplified model of water sloshing can be used to analyze the seismic response of the shield building.
期刊介绍:
Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.