Samuel L. Braunstein, Mir Faizal, Lawrence M. Krauss, Francesco Marino, Naveed A. Shah
{"title":"流体对量子引力的模拟模拟","authors":"Samuel L. Braunstein, Mir Faizal, Lawrence M. Krauss, Francesco Marino, Naveed A. Shah","doi":"10.1038/s42254-023-00630-y","DOIUrl":null,"url":null,"abstract":"Technological advances in controlling and manipulating fluids have enabled the experimental realization of acoustic analogues of gravitational black holes. A flowing fluid provides an effective curved spacetime on which sound waves can propagate, allowing the simulation of gravitational geometries and related phenomena. The past decade has witnessed various hydrodynamic experiments testing disparate aspects of black-hole physics culminating with experimental evidence of Hawking radiation and Penrose superradiance. In this Perspective article, we discuss the potential use of analogue hydrodynamic systems beyond classical general relativity towards the exploration of quantum gravitational effects. These include possible insights into the information-loss paradox, black-hole physics with Planck-scale quantum corrections, emergent gravity scenarios and the regularization of curvature singularities. We aim at bridging the gap between the non-overlapping communities of experimentalists working with classical and quantum fluids and quantum-gravity theorists, by illustrating the opportunities made possible by the latest experimental and theoretical developments in these areas. Experiments in fluids have enabled the simulation of several aspects of black holes and quantum field theory in curved spacetime. This Perspective article discusses possible hydrodynamic simulators of quantum gravitational effects, ranging from the resolution of curvature singularities to the emergence of spacetime geometry from quantum degrees of freedom.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"5 10","pages":"612-622"},"PeriodicalIF":44.8000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analogue simulations of quantum gravity with fluids\",\"authors\":\"Samuel L. Braunstein, Mir Faizal, Lawrence M. Krauss, Francesco Marino, Naveed A. Shah\",\"doi\":\"10.1038/s42254-023-00630-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technological advances in controlling and manipulating fluids have enabled the experimental realization of acoustic analogues of gravitational black holes. A flowing fluid provides an effective curved spacetime on which sound waves can propagate, allowing the simulation of gravitational geometries and related phenomena. The past decade has witnessed various hydrodynamic experiments testing disparate aspects of black-hole physics culminating with experimental evidence of Hawking radiation and Penrose superradiance. In this Perspective article, we discuss the potential use of analogue hydrodynamic systems beyond classical general relativity towards the exploration of quantum gravitational effects. These include possible insights into the information-loss paradox, black-hole physics with Planck-scale quantum corrections, emergent gravity scenarios and the regularization of curvature singularities. We aim at bridging the gap between the non-overlapping communities of experimentalists working with classical and quantum fluids and quantum-gravity theorists, by illustrating the opportunities made possible by the latest experimental and theoretical developments in these areas. Experiments in fluids have enabled the simulation of several aspects of black holes and quantum field theory in curved spacetime. This Perspective article discusses possible hydrodynamic simulators of quantum gravitational effects, ranging from the resolution of curvature singularities to the emergence of spacetime geometry from quantum degrees of freedom.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":\"5 10\",\"pages\":\"612-622\"},\"PeriodicalIF\":44.8000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-023-00630-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-023-00630-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Analogue simulations of quantum gravity with fluids
Technological advances in controlling and manipulating fluids have enabled the experimental realization of acoustic analogues of gravitational black holes. A flowing fluid provides an effective curved spacetime on which sound waves can propagate, allowing the simulation of gravitational geometries and related phenomena. The past decade has witnessed various hydrodynamic experiments testing disparate aspects of black-hole physics culminating with experimental evidence of Hawking radiation and Penrose superradiance. In this Perspective article, we discuss the potential use of analogue hydrodynamic systems beyond classical general relativity towards the exploration of quantum gravitational effects. These include possible insights into the information-loss paradox, black-hole physics with Planck-scale quantum corrections, emergent gravity scenarios and the regularization of curvature singularities. We aim at bridging the gap between the non-overlapping communities of experimentalists working with classical and quantum fluids and quantum-gravity theorists, by illustrating the opportunities made possible by the latest experimental and theoretical developments in these areas. Experiments in fluids have enabled the simulation of several aspects of black holes and quantum field theory in curved spacetime. This Perspective article discusses possible hydrodynamic simulators of quantum gravitational effects, ranging from the resolution of curvature singularities to the emergence of spacetime geometry from quantum degrees of freedom.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.