{"title":"基于interter的颤振抑制动态吸振器的实现","authors":"H. Dogan, N. Sims, D. Wagg","doi":"10.1115/1.4062118","DOIUrl":null,"url":null,"abstract":"\n Chatter is one of the major issues that cause undesirable effects limiting machining productivity. Passive control devices, such as tuned mass dampers (TMDs), have been widely employed to increase machining stability by suppressing chatter. More recently, inerter-based devices have been developed for a wide variety of engineering vibration mitigation applications. However, no experimental study for the application of inerters to the machining stability problem has yet been conducted. This paper presents an implementation of an inerter-based dynamic vibration absorber (IDVA) to the problem of chatter stability, for the first time. For this, it employs the IDVA with a pivoted-bar inerter developed in [1] to mitigate the chatter effect under cutting forces in milling. Due to the nature of machining stability, the optimal design parameters for the IDVA are numerically obtained by considering the real part of the frequency response function (FRF) which enables the absolute stability limit in a single degree-of-freedom (SDOF) to be maximised for a milling operation. Chatter performance is experimentally validated through milling trials using the prototype IDVA and a flexible workpiece. The experimental results show that the IDVA provides more than 15% improvement in the absolute stability limit compared to a classical TMD.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation of inerter-based dynamic vibration absorber for chatter suppression\",\"authors\":\"H. Dogan, N. Sims, D. Wagg\",\"doi\":\"10.1115/1.4062118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Chatter is one of the major issues that cause undesirable effects limiting machining productivity. Passive control devices, such as tuned mass dampers (TMDs), have been widely employed to increase machining stability by suppressing chatter. More recently, inerter-based devices have been developed for a wide variety of engineering vibration mitigation applications. However, no experimental study for the application of inerters to the machining stability problem has yet been conducted. This paper presents an implementation of an inerter-based dynamic vibration absorber (IDVA) to the problem of chatter stability, for the first time. For this, it employs the IDVA with a pivoted-bar inerter developed in [1] to mitigate the chatter effect under cutting forces in milling. Due to the nature of machining stability, the optimal design parameters for the IDVA are numerically obtained by considering the real part of the frequency response function (FRF) which enables the absolute stability limit in a single degree-of-freedom (SDOF) to be maximised for a milling operation. Chatter performance is experimentally validated through milling trials using the prototype IDVA and a flexible workpiece. The experimental results show that the IDVA provides more than 15% improvement in the absolute stability limit compared to a classical TMD.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062118\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062118","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Implementation of inerter-based dynamic vibration absorber for chatter suppression
Chatter is one of the major issues that cause undesirable effects limiting machining productivity. Passive control devices, such as tuned mass dampers (TMDs), have been widely employed to increase machining stability by suppressing chatter. More recently, inerter-based devices have been developed for a wide variety of engineering vibration mitigation applications. However, no experimental study for the application of inerters to the machining stability problem has yet been conducted. This paper presents an implementation of an inerter-based dynamic vibration absorber (IDVA) to the problem of chatter stability, for the first time. For this, it employs the IDVA with a pivoted-bar inerter developed in [1] to mitigate the chatter effect under cutting forces in milling. Due to the nature of machining stability, the optimal design parameters for the IDVA are numerically obtained by considering the real part of the frequency response function (FRF) which enables the absolute stability limit in a single degree-of-freedom (SDOF) to be maximised for a milling operation. Chatter performance is experimentally validated through milling trials using the prototype IDVA and a flexible workpiece. The experimental results show that the IDVA provides more than 15% improvement in the absolute stability limit compared to a classical TMD.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining