{"title":"一种基于网络约束的二元运动数据聚类方法","authors":"Wenkai Liu, Qiliang Liu, Jie Yang, M. Deng","doi":"10.1080/13658816.2022.2137879","DOIUrl":null,"url":null,"abstract":"Abstract For bivariate origin-destination (OD) movement data composed of two types of individual OD movements, a bivariate cluster can be defined as a group of two types of OD movements, at least one of which has a high density. The identification of such bivariate clusters can provide new insights into the spatial interactions between different movement patterns. Because of spatial heterogeneity, the effective detection of inhomogeneous and irregularly shaped bivariate clusters from bivariate OD movement data remains a challenge. To fill this gap, we propose a network-constrained method for clustering two types of individual OD movements on road networks. To adaptively estimate the densities of inhomogeneous OD movements, we first define a new network-constrained density based on the concept of the shared nearest neighbor. A fast Monte Carlo simulation method is then developed to statistically estimate the density threshold for each type of OD movements. Finally, bivariate clusters are constructed using the density-connectivity mechanism. Experiments on simulated datasets demonstrate that the proposed method outperformed three state-of-the-art methods in identifying inhomogeneous and irregularly shaped bivariate clusters. The proposed method was applied to taxi and ride-hailing service datasets in Xiamen. The identified bivariate clusters successfully reveal competition patterns between taxi and ride-hailing services.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"767 - 787"},"PeriodicalIF":4.3000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A network-constrained clustering method for bivariate origin-destination movement data\",\"authors\":\"Wenkai Liu, Qiliang Liu, Jie Yang, M. Deng\",\"doi\":\"10.1080/13658816.2022.2137879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For bivariate origin-destination (OD) movement data composed of two types of individual OD movements, a bivariate cluster can be defined as a group of two types of OD movements, at least one of which has a high density. The identification of such bivariate clusters can provide new insights into the spatial interactions between different movement patterns. Because of spatial heterogeneity, the effective detection of inhomogeneous and irregularly shaped bivariate clusters from bivariate OD movement data remains a challenge. To fill this gap, we propose a network-constrained method for clustering two types of individual OD movements on road networks. To adaptively estimate the densities of inhomogeneous OD movements, we first define a new network-constrained density based on the concept of the shared nearest neighbor. A fast Monte Carlo simulation method is then developed to statistically estimate the density threshold for each type of OD movements. Finally, bivariate clusters are constructed using the density-connectivity mechanism. Experiments on simulated datasets demonstrate that the proposed method outperformed three state-of-the-art methods in identifying inhomogeneous and irregularly shaped bivariate clusters. The proposed method was applied to taxi and ride-hailing service datasets in Xiamen. The identified bivariate clusters successfully reveal competition patterns between taxi and ride-hailing services.\",\"PeriodicalId\":14162,\"journal\":{\"name\":\"International Journal of Geographical Information Science\",\"volume\":\"37 1\",\"pages\":\"767 - 787\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geographical Information Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/13658816.2022.2137879\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2022.2137879","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A network-constrained clustering method for bivariate origin-destination movement data
Abstract For bivariate origin-destination (OD) movement data composed of two types of individual OD movements, a bivariate cluster can be defined as a group of two types of OD movements, at least one of which has a high density. The identification of such bivariate clusters can provide new insights into the spatial interactions between different movement patterns. Because of spatial heterogeneity, the effective detection of inhomogeneous and irregularly shaped bivariate clusters from bivariate OD movement data remains a challenge. To fill this gap, we propose a network-constrained method for clustering two types of individual OD movements on road networks. To adaptively estimate the densities of inhomogeneous OD movements, we first define a new network-constrained density based on the concept of the shared nearest neighbor. A fast Monte Carlo simulation method is then developed to statistically estimate the density threshold for each type of OD movements. Finally, bivariate clusters are constructed using the density-connectivity mechanism. Experiments on simulated datasets demonstrate that the proposed method outperformed three state-of-the-art methods in identifying inhomogeneous and irregularly shaped bivariate clusters. The proposed method was applied to taxi and ride-hailing service datasets in Xiamen. The identified bivariate clusters successfully reveal competition patterns between taxi and ride-hailing services.
期刊介绍:
International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.