基于最小cram -von- mises距离的阿基米德copula参数估计

IF 0.1 Q4 STATISTICS & PROBABILITY JIRSS-Journal of the Iranian Statistical Society Pub Date : 2020-06-01 DOI:10.29252/jirss.19.1.163
Selim Orhun Susam
{"title":"基于最小cram<s:1> -von- mises距离的阿基米德copula参数估计","authors":"Selim Orhun Susam","doi":"10.29252/jirss.19.1.163","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution function. A Monte Carlo study is performed to measure the performance of the new estimator and compared to conventional estimation methods. In terms of estimation performance, simulation results show that the proposed Minumum Cramér-von-Mises estimation method has a good performance for low dependence and a small sample size when compared with the other estimation methods. The new minimum distance estimation of the dependence parameter is applied to model the dependence of two real data sets.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":"19 1","pages":"163-183"},"PeriodicalIF":0.1000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance\",\"authors\":\"Selim Orhun Susam\",\"doi\":\"10.29252/jirss.19.1.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution function. A Monte Carlo study is performed to measure the performance of the new estimator and compared to conventional estimation methods. In terms of estimation performance, simulation results show that the proposed Minumum Cramér-von-Mises estimation method has a good performance for low dependence and a small sample size when compared with the other estimation methods. The new minimum distance estimation of the dependence parameter is applied to model the dependence of two real data sets.\",\"PeriodicalId\":42965,\"journal\":{\"name\":\"JIRSS-Journal of the Iranian Statistical Society\",\"volume\":\"19 1\",\"pages\":\"163-183\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIRSS-Journal of the Iranian Statistical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/jirss.19.1.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/jirss.19.1.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

摘要

本文的目的是介绍一种在非参数设置下估计阿基米德copula依赖参数的新方法。相关性参数的估计已被选择为最小化Cramér-von-Mises距离的值,该距离测量经验Bernstein-Kendall分布函数和真实Kendall分配函数之间的距离。进行了蒙特卡罗研究以测量新估计器的性能,并与传统的估计方法进行了比较。在估计性能方面,仿真结果表明,与其他估计方法相比,所提出的Minumm-Cramér-von-Mises估计方法具有低依赖性和小样本量的良好性能。将相关性参数的新的最小距离估计应用于两个真实数据集的相关性建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance
The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution function. A Monte Carlo study is performed to measure the performance of the new estimator and compared to conventional estimation methods. In terms of estimation performance, simulation results show that the proposed Minumum Cramér-von-Mises estimation method has a good performance for low dependence and a small sample size when compared with the other estimation methods. The new minimum distance estimation of the dependence parameter is applied to model the dependence of two real data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Random Projection-Based Anderson-Darling Test for Random Fields Time Series Modeling of Coronavirus (COVID-19) Spread in Iran A Comparative Study of Some Clustering Algorithms on Shape Data A Discrete Kumaraswamy Marshall-Olkin Exponential Distribution Preservation of Stochastic Orderings of Interdependent Series and Parallel Systems by Componentwise Switching to Exponentiated Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1