Vali Rasooli Sharabiani, Ali Khorramifar, H. Karami, Jesús Lozano, S. Tabor, Yousef Darvishi, M. Gancarz
{"title":"气体传感器与化学计量学相结合的大米掺假无损检测","authors":"Vali Rasooli Sharabiani, Ali Khorramifar, H. Karami, Jesús Lozano, S. Tabor, Yousef Darvishi, M. Gancarz","doi":"10.31545/intagr/166009","DOIUrl":null,"url":null,"abstract":". In order to accurately determine and evaluate the odour of rice, it is necessary to identify the substances that affect that odour and to develop methods to determine their amounts. For more than three decades, researchers have been studying the factors that produce and influence the aroma of rice. An electronic nose can be used to detect the volatile compounds of rice, while an olfactory machine is capable of classifying and detecting the variety, origin, and storage time of rice with a high degree of effi - ciency. This study aimed to investigate the efficacy of electronic noses and other chemometric methods such as principal component analysis, linear discriminant analysis, and the Artificial Neural Network as a cost-effective, rapid, and non-destructive method for the detection of pure and adulterated rice varieties. Therefore, an electronic nose equipped with nine metal oxide semiconductor sensors with low power consumption was used. The results showed that the amount of variance accounted for by PC1 and PC4 was 98% for the samples used. Also, the classifi - cation accuracy of the linear discriminant analysis and Artificial Neural Network methods were 100%, respectively. The Support Vector Machines method (including Nu-SVM and C-SVM) was also used, which, in all its functions except the polynomial function, produced 100% accuracy in terms of training and validation.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-destructive test to detect adulteration of rice using gas sensors coupled with chemometrics methods\",\"authors\":\"Vali Rasooli Sharabiani, Ali Khorramifar, H. Karami, Jesús Lozano, S. Tabor, Yousef Darvishi, M. Gancarz\",\"doi\":\"10.31545/intagr/166009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In order to accurately determine and evaluate the odour of rice, it is necessary to identify the substances that affect that odour and to develop methods to determine their amounts. For more than three decades, researchers have been studying the factors that produce and influence the aroma of rice. An electronic nose can be used to detect the volatile compounds of rice, while an olfactory machine is capable of classifying and detecting the variety, origin, and storage time of rice with a high degree of effi - ciency. This study aimed to investigate the efficacy of electronic noses and other chemometric methods such as principal component analysis, linear discriminant analysis, and the Artificial Neural Network as a cost-effective, rapid, and non-destructive method for the detection of pure and adulterated rice varieties. Therefore, an electronic nose equipped with nine metal oxide semiconductor sensors with low power consumption was used. The results showed that the amount of variance accounted for by PC1 and PC4 was 98% for the samples used. Also, the classifi - cation accuracy of the linear discriminant analysis and Artificial Neural Network methods were 100%, respectively. The Support Vector Machines method (including Nu-SVM and C-SVM) was also used, which, in all its functions except the polynomial function, produced 100% accuracy in terms of training and validation.\",\"PeriodicalId\":13959,\"journal\":{\"name\":\"International Agrophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Agrophysics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.31545/intagr/166009\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Agrophysics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.31545/intagr/166009","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Non-destructive test to detect adulteration of rice using gas sensors coupled with chemometrics methods
. In order to accurately determine and evaluate the odour of rice, it is necessary to identify the substances that affect that odour and to develop methods to determine their amounts. For more than three decades, researchers have been studying the factors that produce and influence the aroma of rice. An electronic nose can be used to detect the volatile compounds of rice, while an olfactory machine is capable of classifying and detecting the variety, origin, and storage time of rice with a high degree of effi - ciency. This study aimed to investigate the efficacy of electronic noses and other chemometric methods such as principal component analysis, linear discriminant analysis, and the Artificial Neural Network as a cost-effective, rapid, and non-destructive method for the detection of pure and adulterated rice varieties. Therefore, an electronic nose equipped with nine metal oxide semiconductor sensors with low power consumption was used. The results showed that the amount of variance accounted for by PC1 and PC4 was 98% for the samples used. Also, the classifi - cation accuracy of the linear discriminant analysis and Artificial Neural Network methods were 100%, respectively. The Support Vector Machines method (including Nu-SVM and C-SVM) was also used, which, in all its functions except the polynomial function, produced 100% accuracy in terms of training and validation.
期刊介绍:
The journal is focused on the soil-plant-atmosphere system. The journal publishes original research and review papers on any subject regarding soil, plant and atmosphere and the interface in between. Manuscripts on postharvest processing and quality of crops are also welcomed.
Particularly the journal is focused on the following areas:
implications of agricultural land use, soil management and climate change on production of biomass and renewable energy, soil structure, cycling of carbon, water, heat and nutrients, biota, greenhouse gases and environment,
soil-plant-atmosphere continuum and ways of its regulation to increase efficiency of water, energy and chemicals in agriculture,
postharvest management and processing of agricultural and horticultural products in relation to food quality and safety,
mathematical modeling of physical processes affecting environment quality, plant production and postharvest processing,
advances in sensors and communication devices to measure and collect information about physical conditions in agricultural and natural environments.
Papers accepted in the International Agrophysics should reveal substantial novelty and include thoughtful physical, biological and chemical interpretation and accurate description of the methods used.
All manuscripts are initially checked on topic suitability and linguistic quality.