{"title":"用电池废料衍生的氧化石墨烯制备多功能棉织物,增强焦耳加热和电磁干扰屏蔽","authors":"T. Suryaprabha, Seungkyu Park","doi":"10.1177/15280837231178945","DOIUrl":null,"url":null,"abstract":"Nowadays, the research on wearable electronics have received tremendous attraction because of their potential applications in personalized health monitoring and treatment, energy conversion and storage, and human-machine interface system. Herein, we report a facile route for the fabrication of electrically conductive cotton fabric with excellent joule heating and high electromagnetic shielding performances using graphene oxide (GO) and silver nitrate (AgNO3). The GO used in this study is exclusively synthesized from spent batteries in order to minimize the environmental pollution. The surface morphology, elemental analysis, electrical conductivity, thermo-heating behavior and electromagnetic shielding performance have been studied systematically. Due to the high electrical conductivity, the GO-Ag coated cotton with 5 wt% of GO reached high surface temperature of 117.8°C within 35 s, and also it exhibits high electromagnetic interference shielding efficiency value of 79.08 dB. The high flexibility, excellent conductivity, electromagnetic shielding efficiency and joule heating performance of GO-Ag coated cotton fabric suggesting that the GO synthesized from spent batteries will be a potential and valuable resource for the new generation of wearable electronics.","PeriodicalId":16097,"journal":{"name":"Journal of Industrial Textiles","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of multifunctional cotton textile with battery waste- derived graphene oxide for enhanced joule heating and electromagnetic interference shielding\",\"authors\":\"T. Suryaprabha, Seungkyu Park\",\"doi\":\"10.1177/15280837231178945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the research on wearable electronics have received tremendous attraction because of their potential applications in personalized health monitoring and treatment, energy conversion and storage, and human-machine interface system. Herein, we report a facile route for the fabrication of electrically conductive cotton fabric with excellent joule heating and high electromagnetic shielding performances using graphene oxide (GO) and silver nitrate (AgNO3). The GO used in this study is exclusively synthesized from spent batteries in order to minimize the environmental pollution. The surface morphology, elemental analysis, electrical conductivity, thermo-heating behavior and electromagnetic shielding performance have been studied systematically. Due to the high electrical conductivity, the GO-Ag coated cotton with 5 wt% of GO reached high surface temperature of 117.8°C within 35 s, and also it exhibits high electromagnetic interference shielding efficiency value of 79.08 dB. The high flexibility, excellent conductivity, electromagnetic shielding efficiency and joule heating performance of GO-Ag coated cotton fabric suggesting that the GO synthesized from spent batteries will be a potential and valuable resource for the new generation of wearable electronics.\",\"PeriodicalId\":16097,\"journal\":{\"name\":\"Journal of Industrial Textiles\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Textiles\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/15280837231178945\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Textiles","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15280837231178945","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Fabrication of multifunctional cotton textile with battery waste- derived graphene oxide for enhanced joule heating and electromagnetic interference shielding
Nowadays, the research on wearable electronics have received tremendous attraction because of their potential applications in personalized health monitoring and treatment, energy conversion and storage, and human-machine interface system. Herein, we report a facile route for the fabrication of electrically conductive cotton fabric with excellent joule heating and high electromagnetic shielding performances using graphene oxide (GO) and silver nitrate (AgNO3). The GO used in this study is exclusively synthesized from spent batteries in order to minimize the environmental pollution. The surface morphology, elemental analysis, electrical conductivity, thermo-heating behavior and electromagnetic shielding performance have been studied systematically. Due to the high electrical conductivity, the GO-Ag coated cotton with 5 wt% of GO reached high surface temperature of 117.8°C within 35 s, and also it exhibits high electromagnetic interference shielding efficiency value of 79.08 dB. The high flexibility, excellent conductivity, electromagnetic shielding efficiency and joule heating performance of GO-Ag coated cotton fabric suggesting that the GO synthesized from spent batteries will be a potential and valuable resource for the new generation of wearable electronics.
期刊介绍:
The Journal of Industrial Textiles is the only peer reviewed journal devoted exclusively to technology, processing, methodology, modelling and applications in technical textiles, nonwovens, coated and laminated fabrics, textile composites and nanofibers.