{"title":"基于U-Net深度学习模型的强度非均匀食用燕窝杂质检测","authors":"Y. Yeo, Kin‐Sam Yen","doi":"10.46604/IJETI.2021.6891","DOIUrl":null,"url":null,"abstract":"As an important export, cleanliness control on edible bird’s nest (EBN) is paramount. Automatic impurities detection is in urgent need to replace manual practices. However, effective impurities detection algorithm is yet to be developed due to the unresolved inhomogeneous optical properties of EBN. The objective of this work is to develop a novel U-net based algorithm for accurate impurities detection. The algorithm leveraged the convolution mechanisms of U-net for precise and localized features extraction. Output probability tensors were then generated from the deconvolution layers for impurities detection and positioning. The U-net based algorithm outperformed previous image processing-based methods with a higher impurities detection rate of 96.69% and a lower misclassification rate of 10.08%. The applicability of the algorithm was further confirmed with a reasonably high dice coefficient of more than 0.8. In conclusion, the developed U-net based algorithm successfully mitigated intensity inhomogeneity in EBN and improved the impurities detection rate.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"11 1","pages":"135-145"},"PeriodicalIF":1.3000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Impurities Detection in Intensity Inhomogeneous Edible Bird’s Nest (EBN) Using a U-Net Deep Learning Model\",\"authors\":\"Y. Yeo, Kin‐Sam Yen\",\"doi\":\"10.46604/IJETI.2021.6891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an important export, cleanliness control on edible bird’s nest (EBN) is paramount. Automatic impurities detection is in urgent need to replace manual practices. However, effective impurities detection algorithm is yet to be developed due to the unresolved inhomogeneous optical properties of EBN. The objective of this work is to develop a novel U-net based algorithm for accurate impurities detection. The algorithm leveraged the convolution mechanisms of U-net for precise and localized features extraction. Output probability tensors were then generated from the deconvolution layers for impurities detection and positioning. The U-net based algorithm outperformed previous image processing-based methods with a higher impurities detection rate of 96.69% and a lower misclassification rate of 10.08%. The applicability of the algorithm was further confirmed with a reasonably high dice coefficient of more than 0.8. In conclusion, the developed U-net based algorithm successfully mitigated intensity inhomogeneity in EBN and improved the impurities detection rate.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":\"11 1\",\"pages\":\"135-145\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/IJETI.2021.6891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/IJETI.2021.6891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Impurities Detection in Intensity Inhomogeneous Edible Bird’s Nest (EBN) Using a U-Net Deep Learning Model
As an important export, cleanliness control on edible bird’s nest (EBN) is paramount. Automatic impurities detection is in urgent need to replace manual practices. However, effective impurities detection algorithm is yet to be developed due to the unresolved inhomogeneous optical properties of EBN. The objective of this work is to develop a novel U-net based algorithm for accurate impurities detection. The algorithm leveraged the convolution mechanisms of U-net for precise and localized features extraction. Output probability tensors were then generated from the deconvolution layers for impurities detection and positioning. The U-net based algorithm outperformed previous image processing-based methods with a higher impurities detection rate of 96.69% and a lower misclassification rate of 10.08%. The applicability of the algorithm was further confirmed with a reasonably high dice coefficient of more than 0.8. In conclusion, the developed U-net based algorithm successfully mitigated intensity inhomogeneity in EBN and improved the impurities detection rate.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.