{"title":"用统一的全区域MOSFET模型设计和优化超深亚微米CMOS反相器","authors":"Shruti Kalra","doi":"10.29292/jics.v17i3.603","DOIUrl":null,"url":null,"abstract":"Complementary Metal Oxide Semiconductor (CMOS) has always remained the dominant integrated circuit technology specifically for designing digital circuits. This paper examines the modelling (utilizing $\\alpha$-power based MOSFET model), simulation (utilizing HSPICE simulation) and optimization (utilizing Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) techniques) of ultradeep submicron CMOS based digital inverter, performs insightful analysis and extracts formulas for the optimal transistor sizing. Additionally, the study serves as an implementation forum for the thermal analysis of transient characteristics of CMOS inverters at the ultradeep submicron technology node (at 300K and 400K). The results lie within the acceptable range of 1-10\\%.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Optimization of Ultradeep Submicron CMOS Inverter Using a Unified All Regional MOSFET Model\",\"authors\":\"Shruti Kalra\",\"doi\":\"10.29292/jics.v17i3.603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complementary Metal Oxide Semiconductor (CMOS) has always remained the dominant integrated circuit technology specifically for designing digital circuits. This paper examines the modelling (utilizing $\\\\alpha$-power based MOSFET model), simulation (utilizing HSPICE simulation) and optimization (utilizing Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) techniques) of ultradeep submicron CMOS based digital inverter, performs insightful analysis and extracts formulas for the optimal transistor sizing. Additionally, the study serves as an implementation forum for the thermal analysis of transient characteristics of CMOS inverters at the ultradeep submicron technology node (at 300K and 400K). The results lie within the acceptable range of 1-10\\\\%.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v17i3.603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v17i3.603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Design and Optimization of Ultradeep Submicron CMOS Inverter Using a Unified All Regional MOSFET Model
Complementary Metal Oxide Semiconductor (CMOS) has always remained the dominant integrated circuit technology specifically for designing digital circuits. This paper examines the modelling (utilizing $\alpha$-power based MOSFET model), simulation (utilizing HSPICE simulation) and optimization (utilizing Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) techniques) of ultradeep submicron CMOS based digital inverter, performs insightful analysis and extracts formulas for the optimal transistor sizing. Additionally, the study serves as an implementation forum for the thermal analysis of transient characteristics of CMOS inverters at the ultradeep submicron technology node (at 300K and 400K). The results lie within the acceptable range of 1-10\%.
期刊介绍:
This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.