fe3o3和fe3o3相形成的研究→ndfe3/FE2O3纳米复合材料的热退火研究

IF 0.2 Q4 PHYSICS, MULTIDISCIPLINARY Recent Contributions to Physics Pub Date : 2021-09-01 DOI:10.26577/rcph.2021.v78.i3.05
K. Egizbek, K. Kadyrzhanov
{"title":"fe3o3和fe3o3相形成的研究→ndfe3/FE2O3纳米复合材料的热退火研究","authors":"K. Egizbek, K. Kadyrzhanov","doi":"10.26577/rcph.2021.v78.i3.05","DOIUrl":null,"url":null,"abstract":"The aim of this work is systematic study of the thermal annealing effect on the preparation of nanostructured composites NdFeO3/Fe2O3 with a spinel type structure. The interest in these nano­composites is due to the enormous potential of their application as a basis for magnetic devices, catalysts, and magnetic carriers for targeted drug delivery. As a synthesis method, two­stage syn­thesis was used, which includes mechanochemical grinding of nanopowders Fe2O3 and Nd2O3 in a planetary mill, followed by thermal annealing of the resulting mixture in a wide temperature range: 600­1000°C. During the studies carried out, it was found that in the initial state the obtained nano­composites are a mixture of a solid solution of interstitial and substitutional Fe2O3 and Nd2O3. At an annealing temperature of 600°C, the onset of the formation of the NdFeO3 phase is observed, which at a temperature of 1000°C is fully formed and dominates in the composite structure (content more than 85%). It was also found that during thermal sintering, the processes of phase transformations of the Fe2O3­Nd2O3→NdFeO3/Fe2O3 type are accompanied by an increase in the particle size by a factor of 1.5­2","PeriodicalId":29678,"journal":{"name":"Recent Contributions to Physics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STUDY OF PHASE FORMATION IN FE2O3-ND2O3→NDFEO3/FE2O3 NANOCOMPOSITES AS A RESULT OF THERMAL ANNEALING\",\"authors\":\"K. Egizbek, K. Kadyrzhanov\",\"doi\":\"10.26577/rcph.2021.v78.i3.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is systematic study of the thermal annealing effect on the preparation of nanostructured composites NdFeO3/Fe2O3 with a spinel type structure. The interest in these nano­composites is due to the enormous potential of their application as a basis for magnetic devices, catalysts, and magnetic carriers for targeted drug delivery. As a synthesis method, two­stage syn­thesis was used, which includes mechanochemical grinding of nanopowders Fe2O3 and Nd2O3 in a planetary mill, followed by thermal annealing of the resulting mixture in a wide temperature range: 600­1000°C. During the studies carried out, it was found that in the initial state the obtained nano­composites are a mixture of a solid solution of interstitial and substitutional Fe2O3 and Nd2O3. At an annealing temperature of 600°C, the onset of the formation of the NdFeO3 phase is observed, which at a temperature of 1000°C is fully formed and dominates in the composite structure (content more than 85%). It was also found that during thermal sintering, the processes of phase transformations of the Fe2O3­Nd2O3→NdFeO3/Fe2O3 type are accompanied by an increase in the particle size by a factor of 1.5­2\",\"PeriodicalId\":29678,\"journal\":{\"name\":\"Recent Contributions to Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Contributions to Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26577/rcph.2021.v78.i3.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Contributions to Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26577/rcph.2021.v78.i3.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文系统研究了热退火对制备尖晶石型纳米结构NdFeO3/Fe2O3复合材料的影响。对这些纳米复合材料的兴趣是由于它们作为磁性装置、催化剂和靶向药物递送磁性载体的基础的巨大潜力。作为一种合成方法,采用两阶段合成,包括在行星磨机中对纳米粉末Fe2O3和Nd2O3进行机械化学研磨,然后在600-1000°C的宽温度范围内对所得混合物进行热退火。在研究过程中发现,在初始状态下,得到的纳米复合材料是Fe2O3和Nd2O3的间隙和取代固溶体的混合物。在600℃的退火温度下,观察到NdFeO3相开始形成,在1000℃的退火温度下,NdFeO3相完全形成,在复合结构中占主导地位(含量大于85%)。在热烧结过程中,Fe2O3 - nd2o3→NdFeO3/Fe2O3型的相变过程伴随着晶粒尺寸的增大,增大幅度为1.5 ~ 2倍
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STUDY OF PHASE FORMATION IN FE2O3-ND2O3→NDFEO3/FE2O3 NANOCOMPOSITES AS A RESULT OF THERMAL ANNEALING
The aim of this work is systematic study of the thermal annealing effect on the preparation of nanostructured composites NdFeO3/Fe2O3 with a spinel type structure. The interest in these nano­composites is due to the enormous potential of their application as a basis for magnetic devices, catalysts, and magnetic carriers for targeted drug delivery. As a synthesis method, two­stage syn­thesis was used, which includes mechanochemical grinding of nanopowders Fe2O3 and Nd2O3 in a planetary mill, followed by thermal annealing of the resulting mixture in a wide temperature range: 600­1000°C. During the studies carried out, it was found that in the initial state the obtained nano­composites are a mixture of a solid solution of interstitial and substitutional Fe2O3 and Nd2O3. At an annealing temperature of 600°C, the onset of the formation of the NdFeO3 phase is observed, which at a temperature of 1000°C is fully formed and dominates in the composite structure (content more than 85%). It was also found that during thermal sintering, the processes of phase transformations of the Fe2O3­Nd2O3→NdFeO3/Fe2O3 type are accompanied by an increase in the particle size by a factor of 1.5­2
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Installation and technique of experimental investigations of composite materials based on beryllium Calculation of thermomechanical stresses and deformations in a reactor ampoule device with lithium ceramics under neutron irradiation Physical fields as factors of natural processes in the works of the center for astrophysical research of North Kazakhstan University Simulation of atomization and ignition of high-pressure jet stream Development and synchronization of semiconductors excitation sources for active elements on self-terminatint transitions in metal vapors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1