Karin Fritz-Wolf , Jochen Bathke , Stefan Rahlfs , Katja Becker
{"title":"疟原虫特有的氧化还原活性蛋白plasmoredoxin的晶体结构","authors":"Karin Fritz-Wolf , Jochen Bathke , Stefan Rahlfs , Katja Becker","doi":"10.1016/j.crstbi.2022.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>Plasmoredoxin is a 22 kDa thiol–disulfide oxidoreductase involved in cellular redox regulatory processes and antioxidant defense. The 1.6 Å structure of the protein, solved via X-ray crystallography, adopts a modified thioredoxin fold. The structure reveals that plasmoredoxin, unique for malarial parasites, forms a new subgroup of thioredoxin-like proteins together with tryparedoxin, unique for kinetoplastids. Unlike most members of this superfamily, Plrx does not have a proline residue within the CxxC redox motif. In addition, the Plrx structure has a distinct C-terminal domain. Similar to human thioredoxin, plasmoredoxin forms monomers and dimers, which are also structurally similar to the human thioredoxin dimer, and, as in humans, plasmoredoxin is inactive as a dimer. Monomer–dimer equilibrium depends on the surrounding redox conditions, which could support the parasite in reacting to oxidative challenges. Based on structural considerations, the residues of the dimer interface are likely to interact with target proteins. In contrast to <em>human</em> and <em>Plasmodium falciparum</em> thioredoxin, however, there is a cluster of positively charged residues at the dimer interface of plasmoredoxin. These intersubunit (lysine) residues might allow binding of the protein to cellular membranes or to plasminogen. Malaria parasites lack catalase and glutathione peroxidase and therefore depend on their other glutathione and thioredoxin-dependent redox relays. Plasmoredoxin could be part of a so far unknown electron transfer system that only occurs in these parasites. Since the surface charge of plasmoredoxin differs significantly from other members of the thioredoxin superfamily, its three-dimensional structure can provide a model for designing selective redox-modulatory inhibitors.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"4 ","pages":"Pages 87-95"},"PeriodicalIF":2.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665928X22000083/pdfft?md5=35e1363adb6c298eb202cea0c5605a65&pid=1-s2.0-S2665928X22000083-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Crystal structure of plasmoredoxin, a redox-active protein unique for malaria parasites\",\"authors\":\"Karin Fritz-Wolf , Jochen Bathke , Stefan Rahlfs , Katja Becker\",\"doi\":\"10.1016/j.crstbi.2022.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plasmoredoxin is a 22 kDa thiol–disulfide oxidoreductase involved in cellular redox regulatory processes and antioxidant defense. The 1.6 Å structure of the protein, solved via X-ray crystallography, adopts a modified thioredoxin fold. The structure reveals that plasmoredoxin, unique for malarial parasites, forms a new subgroup of thioredoxin-like proteins together with tryparedoxin, unique for kinetoplastids. Unlike most members of this superfamily, Plrx does not have a proline residue within the CxxC redox motif. In addition, the Plrx structure has a distinct C-terminal domain. Similar to human thioredoxin, plasmoredoxin forms monomers and dimers, which are also structurally similar to the human thioredoxin dimer, and, as in humans, plasmoredoxin is inactive as a dimer. Monomer–dimer equilibrium depends on the surrounding redox conditions, which could support the parasite in reacting to oxidative challenges. Based on structural considerations, the residues of the dimer interface are likely to interact with target proteins. In contrast to <em>human</em> and <em>Plasmodium falciparum</em> thioredoxin, however, there is a cluster of positively charged residues at the dimer interface of plasmoredoxin. These intersubunit (lysine) residues might allow binding of the protein to cellular membranes or to plasminogen. Malaria parasites lack catalase and glutathione peroxidase and therefore depend on their other glutathione and thioredoxin-dependent redox relays. Plasmoredoxin could be part of a so far unknown electron transfer system that only occurs in these parasites. Since the surface charge of plasmoredoxin differs significantly from other members of the thioredoxin superfamily, its three-dimensional structure can provide a model for designing selective redox-modulatory inhibitors.</p></div>\",\"PeriodicalId\":10870,\"journal\":{\"name\":\"Current Research in Structural Biology\",\"volume\":\"4 \",\"pages\":\"Pages 87-95\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665928X22000083/pdfft?md5=35e1363adb6c298eb202cea0c5605a65&pid=1-s2.0-S2665928X22000083-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Structural Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665928X22000083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665928X22000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Crystal structure of plasmoredoxin, a redox-active protein unique for malaria parasites
Plasmoredoxin is a 22 kDa thiol–disulfide oxidoreductase involved in cellular redox regulatory processes and antioxidant defense. The 1.6 Å structure of the protein, solved via X-ray crystallography, adopts a modified thioredoxin fold. The structure reveals that plasmoredoxin, unique for malarial parasites, forms a new subgroup of thioredoxin-like proteins together with tryparedoxin, unique for kinetoplastids. Unlike most members of this superfamily, Plrx does not have a proline residue within the CxxC redox motif. In addition, the Plrx structure has a distinct C-terminal domain. Similar to human thioredoxin, plasmoredoxin forms monomers and dimers, which are also structurally similar to the human thioredoxin dimer, and, as in humans, plasmoredoxin is inactive as a dimer. Monomer–dimer equilibrium depends on the surrounding redox conditions, which could support the parasite in reacting to oxidative challenges. Based on structural considerations, the residues of the dimer interface are likely to interact with target proteins. In contrast to human and Plasmodium falciparum thioredoxin, however, there is a cluster of positively charged residues at the dimer interface of plasmoredoxin. These intersubunit (lysine) residues might allow binding of the protein to cellular membranes or to plasminogen. Malaria parasites lack catalase and glutathione peroxidase and therefore depend on their other glutathione and thioredoxin-dependent redox relays. Plasmoredoxin could be part of a so far unknown electron transfer system that only occurs in these parasites. Since the surface charge of plasmoredoxin differs significantly from other members of the thioredoxin superfamily, its three-dimensional structure can provide a model for designing selective redox-modulatory inhibitors.