硫化铜纳米结构及其纳米杂化:近期趋势、未来展望和当前挑战

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers of Materials Science Pub Date : 2023-09-09 DOI:10.1007/s11706-023-0632-1
Narinder Singh
{"title":"硫化铜纳米结构及其纳米杂化:近期趋势、未来展望和当前挑战","authors":"Narinder Singh","doi":"10.1007/s11706-023-0632-1","DOIUrl":null,"url":null,"abstract":"<div><p>Among various metal chalcogenides, metal oxides and phases of copper sulfide, copper(II) sulfide (covellite, CuS) nanostructures have enjoyed special attentiveness from researchers and scientists across the world owing to their complicated structure, peculiar composition and valency, attractive and panoramic morphologies, optical and electrical conductivity, less toxicity, and biocompatibility that can be exploited in advanced and technological applications. This review paper presents a brief idea about crystal structure, composition, and various chemical methods. The mechanism and effect of reaction parameters on the evolution of versatile and attractive morphologies have been described. Physical properties of CuS and its hybrid nanostructures, such as morphology and optical, mechanical, electrical, thermal, and thermoelectrical properties, have been carefully reviewed. A concise account of CuS and its hybrid nanostructures’ diverse applications in emerging and recent applications such as energy storage devices (lithium-ion batteries, supercapacitance), sensors, field emission, photovoltaic cells, organic pollutant removal, electromagnetic wave absorption, and emerging biomedical field (drug delivery, photothermal ablation, deoxyribonucleic acid detection, anti-microbial and theranostic) has also been elucidated. Finally, the prospects, scope, and challenges of CuS nanostructures have been discussed precisely.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper(II) sulfide nanostructures and its nanohybrids: recent trends, future perspectives and current challenges\",\"authors\":\"Narinder Singh\",\"doi\":\"10.1007/s11706-023-0632-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Among various metal chalcogenides, metal oxides and phases of copper sulfide, copper(II) sulfide (covellite, CuS) nanostructures have enjoyed special attentiveness from researchers and scientists across the world owing to their complicated structure, peculiar composition and valency, attractive and panoramic morphologies, optical and electrical conductivity, less toxicity, and biocompatibility that can be exploited in advanced and technological applications. This review paper presents a brief idea about crystal structure, composition, and various chemical methods. The mechanism and effect of reaction parameters on the evolution of versatile and attractive morphologies have been described. Physical properties of CuS and its hybrid nanostructures, such as morphology and optical, mechanical, electrical, thermal, and thermoelectrical properties, have been carefully reviewed. A concise account of CuS and its hybrid nanostructures’ diverse applications in emerging and recent applications such as energy storage devices (lithium-ion batteries, supercapacitance), sensors, field emission, photovoltaic cells, organic pollutant removal, electromagnetic wave absorption, and emerging biomedical field (drug delivery, photothermal ablation, deoxyribonucleic acid detection, anti-microbial and theranostic) has also been elucidated. Finally, the prospects, scope, and challenges of CuS nanostructures have been discussed precisely.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-023-0632-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0632-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在各种金属硫族化合物、金属氧化物和硫化铜相中,硫化铜(covellite, cu)纳米结构因其复杂的结构、独特的组成和价态、迷人的全景形貌、光导性和导电性、低毒性和生物相容性等特点而受到世界各国研究人员和科学家的特别关注。本文简要介绍了晶体结构、组成和各种化学方法。描述了反应参数对多用途和吸引形态演变的机理和影响。对cu及其杂化纳米结构的物理性质,如形貌、光学、机械、电学、热学和热电性能等进行了详细的研究。简要介绍了cu及其混合纳米结构在储能设备(锂离子电池、超级电容)、传感器、场发射、光伏电池、有机污染物去除、电磁波吸收和新兴生物医学领域(药物输送、光热消融、脱氧核糖核酸检测、抗菌和治疗)等新兴和近期应用中的各种应用。最后,对cu纳米结构的发展前景、应用范围和面临的挑战进行了详细的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Copper(II) sulfide nanostructures and its nanohybrids: recent trends, future perspectives and current challenges

Among various metal chalcogenides, metal oxides and phases of copper sulfide, copper(II) sulfide (covellite, CuS) nanostructures have enjoyed special attentiveness from researchers and scientists across the world owing to their complicated structure, peculiar composition and valency, attractive and panoramic morphologies, optical and electrical conductivity, less toxicity, and biocompatibility that can be exploited in advanced and technological applications. This review paper presents a brief idea about crystal structure, composition, and various chemical methods. The mechanism and effect of reaction parameters on the evolution of versatile and attractive morphologies have been described. Physical properties of CuS and its hybrid nanostructures, such as morphology and optical, mechanical, electrical, thermal, and thermoelectrical properties, have been carefully reviewed. A concise account of CuS and its hybrid nanostructures’ diverse applications in emerging and recent applications such as energy storage devices (lithium-ion batteries, supercapacitance), sensors, field emission, photovoltaic cells, organic pollutant removal, electromagnetic wave absorption, and emerging biomedical field (drug delivery, photothermal ablation, deoxyribonucleic acid detection, anti-microbial and theranostic) has also been elucidated. Finally, the prospects, scope, and challenges of CuS nanostructures have been discussed precisely.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
期刊最新文献
In vitro evaluation of Zn–10Mg–xHA composites with the core–shell structure Femtosecond laser-induced graphene for temperature and ultrasensitive flexible strain sensing Adsorption and photocatalytic degradation performances of methyl orange-imprinted polysiloxane particles using TiO2 as matrix Development of high-flux reverse osmosis membranes with MIL-101(Cr)/Fe3O4 interlayer Empowering progress: unraveling the promising capabilities of Cu2S:ZnS:NiS2 trimetal sulphide thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1