{"title":"水热碳化预处理对餐厨垃圾中的大米和生菜的活化效果有显著影响","authors":"","doi":"10.1016/j.gce.2023.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Cooked rice and the vegetables like lettuce are common kitchen waste, which are carbonaceous materials and have the potential as feedstock for the production of activated carbon. Cooking is similar to hydrothermal treatment (HTC), which might impact the subsequent activation of kitchen waste. In this study, the HTC of lettuce, rice, or their mixture and the activation of the resulting hydrochars were conducted. The results indicated that cross-polymerization between the N-containing organics from lettuce and the sugar derivatives from rice took place in their co-HTC, which significantly increased the hydrochar yield. Activation of the hydrochar from the co-HTC generated the AC with a yield of 2 times that from direct activation of mixed lettuce/rice. However, the co-HTC facilitated aromatization, reducing reactivity with K<sub>2</sub>C<sub>2</sub>O<sub>4</sub> in activation and producing the AC with main micropores and low specific surface area. Activation of the hydrochar from HTC of rice followed the above trend, while that from lettuce was the opposite. The organics in lettuce were thermally unstable and could not undergo sufficient aromatization. The activation of hydrochar from HTC of lettuce thus generated the AC with the lowest yield, but the highest specific surface area (1684.9 m<sup>2</sup>/g), abundant mesopores, and superior capability for adsorption of tetracycline. However, the environmental impacts and energy consumption for the production of AC from the hydrochar of lettuce were higher than that from hydrochar of co-HTC.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666952823000420/pdfft?md5=58e89999847d8431c6f15cf0694f0c01&pid=1-s2.0-S2666952823000420-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal carbonization pretreatment makes a remarkable difference in activation of rice and lettuce in food waste\",\"authors\":\"\",\"doi\":\"10.1016/j.gce.2023.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cooked rice and the vegetables like lettuce are common kitchen waste, which are carbonaceous materials and have the potential as feedstock for the production of activated carbon. Cooking is similar to hydrothermal treatment (HTC), which might impact the subsequent activation of kitchen waste. In this study, the HTC of lettuce, rice, or their mixture and the activation of the resulting hydrochars were conducted. The results indicated that cross-polymerization between the N-containing organics from lettuce and the sugar derivatives from rice took place in their co-HTC, which significantly increased the hydrochar yield. Activation of the hydrochar from the co-HTC generated the AC with a yield of 2 times that from direct activation of mixed lettuce/rice. However, the co-HTC facilitated aromatization, reducing reactivity with K<sub>2</sub>C<sub>2</sub>O<sub>4</sub> in activation and producing the AC with main micropores and low specific surface area. Activation of the hydrochar from HTC of rice followed the above trend, while that from lettuce was the opposite. The organics in lettuce were thermally unstable and could not undergo sufficient aromatization. The activation of hydrochar from HTC of lettuce thus generated the AC with the lowest yield, but the highest specific surface area (1684.9 m<sup>2</sup>/g), abundant mesopores, and superior capability for adsorption of tetracycline. However, the environmental impacts and energy consumption for the production of AC from the hydrochar of lettuce were higher than that from hydrochar of co-HTC.</p></div>\",\"PeriodicalId\":66474,\"journal\":{\"name\":\"Green Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666952823000420/pdfft?md5=58e89999847d8431c6f15cf0694f0c01&pid=1-s2.0-S2666952823000420-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemical Engineering\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666952823000420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952823000420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
煮熟的米饭和莴苣等蔬菜是常见的厨房垃圾,它们是碳质材料,有可能成为生产活性炭的原料。烹饪类似于水热处理(HTC),可能会影响厨余垃圾的后续活化。本研究对莴苣、大米或它们的混合物进行了水热处理,并对产生的水成碳进行了活化。结果表明,莴苣中的含氮有机物和大米中的糖衍生物在它们的共热处理过程中发生了交叉聚合,从而显著提高了水炭产率。活化来自共 HTC 的水炭产生的 AC 产量是直接活化莴苣/大米混合水炭产量的 2 倍。不过,共四氯化碳促进了芳香化,降低了活化过程中与 K2C2O4 的反应性,生成的 AC 主要有微孔,比表面积较低。水稻 HTC 水炭的活化遵循上述趋势,而莴苣则相反。莴苣中的有机物热不稳定,无法充分芳香化。因此,活化莴苣 HTC 中的水炭生成的 AC 产率最低,但比表面积(1684.9 m2/g)最高,中孔丰富,对四环素的吸附能力更强。不过,用莴苣水煤灰生产 AC 对环境的影响和能耗都高于用共四氯化碳水煤灰生产 AC。
Hydrothermal carbonization pretreatment makes a remarkable difference in activation of rice and lettuce in food waste
Cooked rice and the vegetables like lettuce are common kitchen waste, which are carbonaceous materials and have the potential as feedstock for the production of activated carbon. Cooking is similar to hydrothermal treatment (HTC), which might impact the subsequent activation of kitchen waste. In this study, the HTC of lettuce, rice, or their mixture and the activation of the resulting hydrochars were conducted. The results indicated that cross-polymerization between the N-containing organics from lettuce and the sugar derivatives from rice took place in their co-HTC, which significantly increased the hydrochar yield. Activation of the hydrochar from the co-HTC generated the AC with a yield of 2 times that from direct activation of mixed lettuce/rice. However, the co-HTC facilitated aromatization, reducing reactivity with K2C2O4 in activation and producing the AC with main micropores and low specific surface area. Activation of the hydrochar from HTC of rice followed the above trend, while that from lettuce was the opposite. The organics in lettuce were thermally unstable and could not undergo sufficient aromatization. The activation of hydrochar from HTC of lettuce thus generated the AC with the lowest yield, but the highest specific surface area (1684.9 m2/g), abundant mesopores, and superior capability for adsorption of tetracycline. However, the environmental impacts and energy consumption for the production of AC from the hydrochar of lettuce were higher than that from hydrochar of co-HTC.