利用遗传算法对奥格登能源模型进行优化

IF 5.8 4区 工程技术 Q1 MECHANICS Applied Rheology Pub Date : 2019-01-01 DOI:10.1515/arh-2019-0003
B. B. Blaise, G. Betchewe, T. Beda
{"title":"利用遗传算法对奥格登能源模型进行优化","authors":"B. B. Blaise, G. Betchewe, T. Beda","doi":"10.1515/arh-2019-0003","DOIUrl":null,"url":null,"abstract":"Abstract The model of Ogden, is a density of energy used in the modeling of hyperelastic materials behavior. This model of energy presents a high number of material parameters to identify. In this paper, we expose a method of identification of these parameters:Genetic Algorithm. This method contrary to the method of Beda-Chevalier, Least Squares, directed programming object method, PSA (Pattern Search Algorithm) and LMA (Levenberg-Marquardt), allows to identify quickly good parameters which give to the Ogden model a very good prediction in uniaxial tension, biaxial tension and pure shear. This prediction is considered to be better becausewe better bring the experimental curve closer to Treloar one with the parameters optimized by the genetic algorithm.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":"29 1","pages":"21 - 29"},"PeriodicalIF":5.8000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/arh-2019-0003","citationCount":"8","resultStr":"{\"title\":\"Optimization of the model of Ogden energy by the genetic algorithm method\",\"authors\":\"B. B. Blaise, G. Betchewe, T. Beda\",\"doi\":\"10.1515/arh-2019-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The model of Ogden, is a density of energy used in the modeling of hyperelastic materials behavior. This model of energy presents a high number of material parameters to identify. In this paper, we expose a method of identification of these parameters:Genetic Algorithm. This method contrary to the method of Beda-Chevalier, Least Squares, directed programming object method, PSA (Pattern Search Algorithm) and LMA (Levenberg-Marquardt), allows to identify quickly good parameters which give to the Ogden model a very good prediction in uniaxial tension, biaxial tension and pure shear. This prediction is considered to be better becausewe better bring the experimental curve closer to Treloar one with the parameters optimized by the genetic algorithm.\",\"PeriodicalId\":50738,\"journal\":{\"name\":\"Applied Rheology\",\"volume\":\"29 1\",\"pages\":\"21 - 29\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/arh-2019-0003\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/arh-2019-0003\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/arh-2019-0003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 8

摘要

Ogden模型,是一种用于超弹性材料行为建模的能量密度模型。这种能量模型提出了大量需要识别的材料参数。在本文中,我们提出了一种识别这些参数的方法:遗传算法。该方法与Beda-Chevalier、最小二乘法、有向规划对象法、PSA(模式搜索算法)和LMA (Levenberg-Marquardt)方法相反,可以快速识别良好的参数,使Ogden模型在单轴张力、双轴张力和纯剪切中具有很好的预测效果。通过遗传算法优化后的参数能更好地使实验曲线更接近三角曲线,因此这种预测是更好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of the model of Ogden energy by the genetic algorithm method
Abstract The model of Ogden, is a density of energy used in the modeling of hyperelastic materials behavior. This model of energy presents a high number of material parameters to identify. In this paper, we expose a method of identification of these parameters:Genetic Algorithm. This method contrary to the method of Beda-Chevalier, Least Squares, directed programming object method, PSA (Pattern Search Algorithm) and LMA (Levenberg-Marquardt), allows to identify quickly good parameters which give to the Ogden model a very good prediction in uniaxial tension, biaxial tension and pure shear. This prediction is considered to be better becausewe better bring the experimental curve closer to Treloar one with the parameters optimized by the genetic algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Rheology
Applied Rheology 物理-力学
CiteScore
3.00
自引率
5.60%
发文量
7
审稿时长
>12 weeks
期刊介绍: Applied Rheology is a peer-reviewed, open access, electronic journal devoted to the publication in the field of applied rheology. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
期刊最新文献
Prediction of sensory textures of cosmetics using large amplitude oscillatory shear and extensional rheology Viscoplastic fluid flow in pipes: A rheological study using in-situ laser Doppler velocimetry Structural damage characteristics and mechanism of granite residual soil Rheological characteristics and seepage laws of sandstone specimens containing an inclined single fracture under three-dimensional stress Computational analysis of nanoparticles and waste discharge concentration past a rotating sphere with Lorentz forces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1