时变尾相关性建模及其在系统风险预测中的应用*

IF 1.8 3区 经济学 Q2 BUSINESS, FINANCE Journal of Financial Econometrics Pub Date : 2021-02-24 DOI:10.1093/JJFINEC/NBAA043
Y. Hoga
{"title":"时变尾相关性建模及其在系统风险预测中的应用*","authors":"Y. Hoga","doi":"10.1093/JJFINEC/NBAA043","DOIUrl":null,"url":null,"abstract":"\n Empirical evidence for multivariate stock suggests that there are changes from asymptotic independence to asymptotic dependence and vice versa. Under asymptotic independence, the probability of joint extremes vanishes, whereas under asymptotic dependence, this probability remains positive. In this paper, we propose a dynamic model for bivariate extremes that allows for smooth transitions between regimes of asymptotic independence and asymptotic dependence. In doing so, we ignore the bulk of the distribution and only model the joint tail of interest. We propose a maximum-likelihood estimator for the model parameters and demonstrate its accuracy in simulations. An empirical application to losses on the CAC 40 and DAX 30 illustrates that our model provides a detailed description of changes in the extremal dependence structure. Furthermore, we show that our model issues adequate forecasts of systemic risk, as measured by CoVaR. Finally, we find some evidence that our CoVaR forecasts outperform those of a benchmark dynamic t-copula model.returns","PeriodicalId":47596,"journal":{"name":"Journal of Financial Econometrics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/JJFINEC/NBAA043","citationCount":"5","resultStr":"{\"title\":\"Modeling Time-Varying Tail Dependence, with Application to Systemic Risk Forecasting*\",\"authors\":\"Y. Hoga\",\"doi\":\"10.1093/JJFINEC/NBAA043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Empirical evidence for multivariate stock suggests that there are changes from asymptotic independence to asymptotic dependence and vice versa. Under asymptotic independence, the probability of joint extremes vanishes, whereas under asymptotic dependence, this probability remains positive. In this paper, we propose a dynamic model for bivariate extremes that allows for smooth transitions between regimes of asymptotic independence and asymptotic dependence. In doing so, we ignore the bulk of the distribution and only model the joint tail of interest. We propose a maximum-likelihood estimator for the model parameters and demonstrate its accuracy in simulations. An empirical application to losses on the CAC 40 and DAX 30 illustrates that our model provides a detailed description of changes in the extremal dependence structure. Furthermore, we show that our model issues adequate forecasts of systemic risk, as measured by CoVaR. Finally, we find some evidence that our CoVaR forecasts outperform those of a benchmark dynamic t-copula model.returns\",\"PeriodicalId\":47596,\"journal\":{\"name\":\"Journal of Financial Econometrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/JJFINEC/NBAA043\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Financial Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1093/JJFINEC/NBAA043\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/JJFINEC/NBAA043","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 5

摘要

多元股票的经验证据表明,从渐近独立到渐近依赖的变化,反之亦然。在渐近独立条件下,联合极值的概率消失,而在渐近相关条件下,联合极值的概率保持为正。在本文中,我们提出了一个二元极值的动态模型,该模型允许在渐近独立和渐近依赖的状态之间平滑过渡。在这样做时,我们忽略了分布的大部分,只对感兴趣的联合尾部建模。我们提出了模型参数的最大似然估计,并在仿真中验证了其准确性。对CAC 40和DAX 30指数损失的实证应用表明,我们的模型提供了对极端依赖结构变化的详细描述。此外,我们表明我们的模型对系统风险进行了充分的预测,以CoVaR为衡量标准。最后,我们发现了一些证据,证明我们的CoVaR预测优于基准动态t-copula模型的预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Time-Varying Tail Dependence, with Application to Systemic Risk Forecasting*
Empirical evidence for multivariate stock suggests that there are changes from asymptotic independence to asymptotic dependence and vice versa. Under asymptotic independence, the probability of joint extremes vanishes, whereas under asymptotic dependence, this probability remains positive. In this paper, we propose a dynamic model for bivariate extremes that allows for smooth transitions between regimes of asymptotic independence and asymptotic dependence. In doing so, we ignore the bulk of the distribution and only model the joint tail of interest. We propose a maximum-likelihood estimator for the model parameters and demonstrate its accuracy in simulations. An empirical application to losses on the CAC 40 and DAX 30 illustrates that our model provides a detailed description of changes in the extremal dependence structure. Furthermore, we show that our model issues adequate forecasts of systemic risk, as measured by CoVaR. Finally, we find some evidence that our CoVaR forecasts outperform those of a benchmark dynamic t-copula model.returns
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
8.00%
发文量
39
期刊介绍: "The Journal of Financial Econometrics is well situated to become the premier journal in its field. It has started with an excellent first year and I expect many more."
期刊最新文献
Large-Dimensional Portfolio Selection with a High-Frequency-Based Dynamic Factor Model Exploiting Intraday Decompositions in Realized Volatility Forecasting: A Forecast Reconciliation Approach A Structural Break in the Aggregate Earnings–Returns Relation Large Sample Estimators of the Stochastic Discount Factor Jump Clustering, Information Flows, and Stock Price Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1