{"title":"苏门答腊岛南部火灾易发区干旱日数与降水总量的联合分布及其重合概率","authors":"S. Nurdiati, M. Najib, Achmad Syarief Thalib","doi":"10.21163/gt_2022.172.10","DOIUrl":null,"url":null,"abstract":": El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) can affect the increase in rainfall intensity and the number of dry days, also known as dry spells that can cause drought and increase the potential for forest fires. This study examines the effect of ENSO and IOD conditions on the joint distribution of the number of dry days and total precipitation in a fire-prone area in southern Sumatra, Indonesia. The joint distribution is constructed using rotated copulas from several families, including Gaussian, student’s t, Clayton, Gumbel, Frank, Joe, Galambos, BB1, BB6, BB7, and BB8. Fire-prone areas are defined using k-mean clustering, while the copula parameters are estimated using the inference of function for margins (IFM) method. Based on the peak of joint probability density functions (PDFs), ENSO and IOD conditions had a significant effect in the dry season but had no significant effect in the rainy season. The peak of joint PDFs is getting to the dry-dry conditions when the ENSO and IOD indexes increase in the dry season. However, based on coincidence probability, ENSO conditions still influence the joint distribution between the number of dry days and total precipitation during the rainy season but not with IOD conditions. The lower the ENSO index, the higher the probability of wet conditions co-occurring in the number of dry days and total precipitation. Meanwhile, ENSO and IOD conditions significantly affect the coincidence probability between the number of dry days and total precipitation. Moderate-Strong El Niño has the most considerable coincidence probability of 68.5%, followed by Positive IOD with 62.6%. The two conditions had similar effects on the joint distribution of the number of dry days and total precipitation. Moreover, the association between the number of dry days and the total precipitation was stronger in the dry season than in the rainy","PeriodicalId":45100,"journal":{"name":"Geographia Technica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"JOINT DISTRIBUTION AND COINCIDENCE PROBABILITY OF THE NUMBER OF DRY DAYS AND THE TOTAL AMOUNT OF PRECIPITATION IN SOUTHERN SUMATRA FIRE-PRONE AREA\",\"authors\":\"S. Nurdiati, M. Najib, Achmad Syarief Thalib\",\"doi\":\"10.21163/gt_2022.172.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) can affect the increase in rainfall intensity and the number of dry days, also known as dry spells that can cause drought and increase the potential for forest fires. This study examines the effect of ENSO and IOD conditions on the joint distribution of the number of dry days and total precipitation in a fire-prone area in southern Sumatra, Indonesia. The joint distribution is constructed using rotated copulas from several families, including Gaussian, student’s t, Clayton, Gumbel, Frank, Joe, Galambos, BB1, BB6, BB7, and BB8. Fire-prone areas are defined using k-mean clustering, while the copula parameters are estimated using the inference of function for margins (IFM) method. Based on the peak of joint probability density functions (PDFs), ENSO and IOD conditions had a significant effect in the dry season but had no significant effect in the rainy season. The peak of joint PDFs is getting to the dry-dry conditions when the ENSO and IOD indexes increase in the dry season. However, based on coincidence probability, ENSO conditions still influence the joint distribution between the number of dry days and total precipitation during the rainy season but not with IOD conditions. The lower the ENSO index, the higher the probability of wet conditions co-occurring in the number of dry days and total precipitation. Meanwhile, ENSO and IOD conditions significantly affect the coincidence probability between the number of dry days and total precipitation. Moderate-Strong El Niño has the most considerable coincidence probability of 68.5%, followed by Positive IOD with 62.6%. The two conditions had similar effects on the joint distribution of the number of dry days and total precipitation. Moreover, the association between the number of dry days and the total precipitation was stronger in the dry season than in the rainy\",\"PeriodicalId\":45100,\"journal\":{\"name\":\"Geographia Technica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographia Technica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21163/gt_2022.172.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographia Technica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21163/gt_2022.172.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
JOINT DISTRIBUTION AND COINCIDENCE PROBABILITY OF THE NUMBER OF DRY DAYS AND THE TOTAL AMOUNT OF PRECIPITATION IN SOUTHERN SUMATRA FIRE-PRONE AREA
: El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) can affect the increase in rainfall intensity and the number of dry days, also known as dry spells that can cause drought and increase the potential for forest fires. This study examines the effect of ENSO and IOD conditions on the joint distribution of the number of dry days and total precipitation in a fire-prone area in southern Sumatra, Indonesia. The joint distribution is constructed using rotated copulas from several families, including Gaussian, student’s t, Clayton, Gumbel, Frank, Joe, Galambos, BB1, BB6, BB7, and BB8. Fire-prone areas are defined using k-mean clustering, while the copula parameters are estimated using the inference of function for margins (IFM) method. Based on the peak of joint probability density functions (PDFs), ENSO and IOD conditions had a significant effect in the dry season but had no significant effect in the rainy season. The peak of joint PDFs is getting to the dry-dry conditions when the ENSO and IOD indexes increase in the dry season. However, based on coincidence probability, ENSO conditions still influence the joint distribution between the number of dry days and total precipitation during the rainy season but not with IOD conditions. The lower the ENSO index, the higher the probability of wet conditions co-occurring in the number of dry days and total precipitation. Meanwhile, ENSO and IOD conditions significantly affect the coincidence probability between the number of dry days and total precipitation. Moderate-Strong El Niño has the most considerable coincidence probability of 68.5%, followed by Positive IOD with 62.6%. The two conditions had similar effects on the joint distribution of the number of dry days and total precipitation. Moreover, the association between the number of dry days and the total precipitation was stronger in the dry season than in the rainy
期刊介绍:
Geographia Technica is a journal devoted to the publication of all papers on all aspects of the use of technical and quantitative methods in geographical research. It aims at presenting its readers with the latest developments in G.I.S technology, mathematical methods applicable to any field of geography, territorial micro-scalar and laboratory experiments, and the latest developments induced by the measurement techniques to the geographical research. Geographia Technica is dedicated to all those who understand that nowadays every field of geography can only be described by specific numerical values, variables both oftime and space which require the sort of numerical analysis only possible with the aid of technical and quantitative methods offered by powerful computers and dedicated software. Our understanding of Geographia Technica expands the concept of technical methods applied to geography to its broadest sense and for that, papers of different interests such as: G.l.S, Spatial Analysis, Remote Sensing, Cartography or Geostatistics as well as papers which, by promoting the above mentioned directions bring a technical approach in the fields of hydrology, climatology, geomorphology, human geography territorial planning are more than welcomed provided they are of sufficient wide interest and relevance.