基于VGG-19架构的预训练掩模cnn分割卵巢癌诊断

IF 1.2 Q3 Computer Science Bio-Algorithms and Med-Systems Pub Date : 2021-09-29 DOI:10.1515/bams-2021-0098
K. Senthil, Vidyaathulasiraman
{"title":"基于VGG-19架构的预训练掩模cnn分割卵巢癌诊断","authors":"K. Senthil, Vidyaathulasiraman","doi":"10.1515/bams-2021-0098","DOIUrl":null,"url":null,"abstract":"Abstract Objectives This paper proposed the neural network-based segmentation model using Pre-trained Mask Convolutional Neural Network (CNN) with VGG-19 architecture. Since ovarian is very tiny tissue, it needs to be segmented with higher accuracy from the annotated image of ovary images collected in dataset. This model is proposed to predict and suppress the illness early and to correctly diagnose it, helping the doctor save the patient's life. Methods The paper uses the neural network based segmentation using Pre-trained Mask CNN integrated with VGG-19 NN architecture for CNN to enhance the ovarian cancer prediction and diagnosis. Results Proposed segmentation using hybrid neural network of CNN will provide higher accuracy when compared with logistic regression, Gaussian naïve Bayes, and random Forest and Support Vector Machine (SVM) classifiers.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ovarian cancer diagnosis using pretrained mask CNN-based segmentation with VGG-19 architecture\",\"authors\":\"K. Senthil, Vidyaathulasiraman\",\"doi\":\"10.1515/bams-2021-0098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives This paper proposed the neural network-based segmentation model using Pre-trained Mask Convolutional Neural Network (CNN) with VGG-19 architecture. Since ovarian is very tiny tissue, it needs to be segmented with higher accuracy from the annotated image of ovary images collected in dataset. This model is proposed to predict and suppress the illness early and to correctly diagnose it, helping the doctor save the patient's life. Methods The paper uses the neural network based segmentation using Pre-trained Mask CNN integrated with VGG-19 NN architecture for CNN to enhance the ovarian cancer prediction and diagnosis. Results Proposed segmentation using hybrid neural network of CNN will provide higher accuracy when compared with logistic regression, Gaussian naïve Bayes, and random Forest and Support Vector Machine (SVM) classifiers.\",\"PeriodicalId\":42620,\"journal\":{\"name\":\"Bio-Algorithms and Med-Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-Algorithms and Med-Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bams-2021-0098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bams-2021-0098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

摘要目的利用VGG-19结构的预训练掩码卷积神经网络(CNN),提出了一种基于神经网络的分割模型。由于卵巢是非常微小的组织,因此需要从数据集中收集的卵巢图像的注释图像中以更高的精度对其进行分割。该模型的提出是为了早期预测和抑制疾病并正确诊断,帮助医生挽救患者的生命。方法采用基于神经网络的分割方法,将预训练的Mask CNN与VGG-19神经网络结构相结合,用于增强对卵巢癌症的预测和诊断。结果与逻辑回归、高斯朴素贝叶斯、随机森林和支持向量机(SVM)分类器相比,使用CNN的混合神经网络进行分割将提供更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ovarian cancer diagnosis using pretrained mask CNN-based segmentation with VGG-19 architecture
Abstract Objectives This paper proposed the neural network-based segmentation model using Pre-trained Mask Convolutional Neural Network (CNN) with VGG-19 architecture. Since ovarian is very tiny tissue, it needs to be segmented with higher accuracy from the annotated image of ovary images collected in dataset. This model is proposed to predict and suppress the illness early and to correctly diagnose it, helping the doctor save the patient's life. Methods The paper uses the neural network based segmentation using Pre-trained Mask CNN integrated with VGG-19 NN architecture for CNN to enhance the ovarian cancer prediction and diagnosis. Results Proposed segmentation using hybrid neural network of CNN will provide higher accuracy when compared with logistic regression, Gaussian naïve Bayes, and random Forest and Support Vector Machine (SVM) classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bio-Algorithms and Med-Systems
Bio-Algorithms and Med-Systems MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
3.80
自引率
0.00%
发文量
3
期刊介绍: The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.
期刊最新文献
Propagation of electrical signals by fungi Light induced spiking of proteinoids Transfer Functions of Proteinoid Microspheres Application of quantum entanglement induced polarization for dual-positron and prompt gamma imaging. Transcriptomic data analysis of melanocytes and melanoma cell lines of LAT transporter genes for precise medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1