{"title":"不同切削条件下AISI 1040车削表面分形维数的优化","authors":"Arkadeb Mukhopadhyay, M. Barman, P. Sahoo","doi":"10.4018/IJSEIMS.2019070102","DOIUrl":null,"url":null,"abstract":"The present work examines the effect of turning process parameters, namely depth of cut and feed rate on the fractal dimension of AISI 1040 steel. Machined surfaces have been characterized using fractal dimensions. Apart from the aforesaid conventional turning parameters, cutting condition has been also considered as a design variable. Three cutting conditions have been considered, e.g. dry, water lubricated, and commercially available water-soluble emulsion lubricated condition. The depth of cut and feed rate has been also been varied at three levels. Experiments were performed following Taguchi's L9 orthogonal array. The optimal setting of process parameters has been achieved through the use of Taguchi's quality loss function represented by a signal-to-noise ratio. The optimal condition predicted from Taguchi's analysis is a 0.4 mm depth of cut, a 0.07 mm/rev feed rate and a water-based emulsion cutting environment. The results obtained for fractal dimensions has been also compared with the more conventional roughness parameter centre line average roughness which is dependent on instrument resolution.","PeriodicalId":37123,"journal":{"name":"International Journal of Surface Engineering and Interdisciplinary Materials Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/IJSEIMS.2019070102","citationCount":"2","resultStr":"{\"title\":\"Optimization of Fractal Dimension of Turned AISI 1040 Steel Surface Considering Different Cutting Conditions\",\"authors\":\"Arkadeb Mukhopadhyay, M. Barman, P. Sahoo\",\"doi\":\"10.4018/IJSEIMS.2019070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work examines the effect of turning process parameters, namely depth of cut and feed rate on the fractal dimension of AISI 1040 steel. Machined surfaces have been characterized using fractal dimensions. Apart from the aforesaid conventional turning parameters, cutting condition has been also considered as a design variable. Three cutting conditions have been considered, e.g. dry, water lubricated, and commercially available water-soluble emulsion lubricated condition. The depth of cut and feed rate has been also been varied at three levels. Experiments were performed following Taguchi's L9 orthogonal array. The optimal setting of process parameters has been achieved through the use of Taguchi's quality loss function represented by a signal-to-noise ratio. The optimal condition predicted from Taguchi's analysis is a 0.4 mm depth of cut, a 0.07 mm/rev feed rate and a water-based emulsion cutting environment. The results obtained for fractal dimensions has been also compared with the more conventional roughness parameter centre line average roughness which is dependent on instrument resolution.\",\"PeriodicalId\":37123,\"journal\":{\"name\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4018/IJSEIMS.2019070102\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSEIMS.2019070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Engineering and Interdisciplinary Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSEIMS.2019070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Optimization of Fractal Dimension of Turned AISI 1040 Steel Surface Considering Different Cutting Conditions
The present work examines the effect of turning process parameters, namely depth of cut and feed rate on the fractal dimension of AISI 1040 steel. Machined surfaces have been characterized using fractal dimensions. Apart from the aforesaid conventional turning parameters, cutting condition has been also considered as a design variable. Three cutting conditions have been considered, e.g. dry, water lubricated, and commercially available water-soluble emulsion lubricated condition. The depth of cut and feed rate has been also been varied at three levels. Experiments were performed following Taguchi's L9 orthogonal array. The optimal setting of process parameters has been achieved through the use of Taguchi's quality loss function represented by a signal-to-noise ratio. The optimal condition predicted from Taguchi's analysis is a 0.4 mm depth of cut, a 0.07 mm/rev feed rate and a water-based emulsion cutting environment. The results obtained for fractal dimensions has been also compared with the more conventional roughness parameter centre line average roughness which is dependent on instrument resolution.