{"title":"基于拉普拉斯评分特征选择的单通道脑电睡眠阶段分类","authors":"Mahtab Vaezi, M. Nasri","doi":"10.29252/MJEE.14.4.11","DOIUrl":null,"url":null,"abstract":"Sleep is a normal state in humans and the subconscious level of brain activity increases during sleep. The brain plays a prominent role during sleep, so a variety of mental and brain-related diseases can be identified through sleep analysis. A complete sleep period according to the two world standards R&K and AASM consists of seven and five steps, respectively. To diagnose diseases through sleep, it is necessary to identify different stages of sleep because the disorder at each stage indicates a certain disease. On the other hand, efficient and useful features should be selected to increase the accuracy of sleep stage classification. In this paper, at first, different statistical, entropy, and chaotic features are extracted from sleep data. Afterwards, by introducing and using the Laplacian score selector, the best feature set is selected. At the end, some conventional classification algorithms such as SVM, ANN and KNN are used to classify different sleep stages. Simulation results confirms the superiority of the proposed method based on the classification results. With the proposed algorithm, 2, 3, 4, 5 and 6 stages of sleep were classified by SVM and decision tree with 98.0%, 98.0%, 97.3%, 96.6%, and 95.0% accuracy, which are more superior to previous method’s results.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"14 1","pages":"11-19"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sleep Stage Classification using Laplacian Score Feature Selection Method by Single Channel EEG\",\"authors\":\"Mahtab Vaezi, M. Nasri\",\"doi\":\"10.29252/MJEE.14.4.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sleep is a normal state in humans and the subconscious level of brain activity increases during sleep. The brain plays a prominent role during sleep, so a variety of mental and brain-related diseases can be identified through sleep analysis. A complete sleep period according to the two world standards R&K and AASM consists of seven and five steps, respectively. To diagnose diseases through sleep, it is necessary to identify different stages of sleep because the disorder at each stage indicates a certain disease. On the other hand, efficient and useful features should be selected to increase the accuracy of sleep stage classification. In this paper, at first, different statistical, entropy, and chaotic features are extracted from sleep data. Afterwards, by introducing and using the Laplacian score selector, the best feature set is selected. At the end, some conventional classification algorithms such as SVM, ANN and KNN are used to classify different sleep stages. Simulation results confirms the superiority of the proposed method based on the classification results. With the proposed algorithm, 2, 3, 4, 5 and 6 stages of sleep were classified by SVM and decision tree with 98.0%, 98.0%, 97.3%, 96.6%, and 95.0% accuracy, which are more superior to previous method’s results.\",\"PeriodicalId\":37804,\"journal\":{\"name\":\"Majlesi Journal of Electrical Engineering\",\"volume\":\"14 1\",\"pages\":\"11-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Majlesi Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/MJEE.14.4.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majlesi Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/MJEE.14.4.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Sleep Stage Classification using Laplacian Score Feature Selection Method by Single Channel EEG
Sleep is a normal state in humans and the subconscious level of brain activity increases during sleep. The brain plays a prominent role during sleep, so a variety of mental and brain-related diseases can be identified through sleep analysis. A complete sleep period according to the two world standards R&K and AASM consists of seven and five steps, respectively. To diagnose diseases through sleep, it is necessary to identify different stages of sleep because the disorder at each stage indicates a certain disease. On the other hand, efficient and useful features should be selected to increase the accuracy of sleep stage classification. In this paper, at first, different statistical, entropy, and chaotic features are extracted from sleep data. Afterwards, by introducing and using the Laplacian score selector, the best feature set is selected. At the end, some conventional classification algorithms such as SVM, ANN and KNN are used to classify different sleep stages. Simulation results confirms the superiority of the proposed method based on the classification results. With the proposed algorithm, 2, 3, 4, 5 and 6 stages of sleep were classified by SVM and decision tree with 98.0%, 98.0%, 97.3%, 96.6%, and 95.0% accuracy, which are more superior to previous method’s results.
期刊介绍:
The scope of Majlesi Journal of Electrcial Engineering (MJEE) is ranging from mathematical foundation to practical engineering design in all areas of electrical engineering. The editorial board is international and original unpublished papers are welcome from throughout the world. The journal is devoted primarily to research papers, but very high quality survey and tutorial papers are also published. There is no publication charge for the authors.