{"title":"经典场的几何化(嵌入空间模型)","authors":"V. I. Noskov","doi":"10.1134/S0202289323020081","DOIUrl":null,"url":null,"abstract":"<p>The possibility of geometrization of the gravitational and electromagnetic fields in 4D Finsler space (the Model of Embedded Spaces—MES) is investigated. The model postulates a proper metric set of an <i>element</i> of distributed matter and asserts that space-time is a mutual physical <i>embedding</i> of such sets. The simplest MES geometry is constructed (its <i>relativistic</i> Finsler version) with a connection that depends on the properties of matter and its fields (torsion and nonmetricity are absent). The field hypothesis and the Least Action Principle of the matter-field system lead to Einstein-type and Maxwell-type equations, and their nonlinearity to the <i>anisotropic</i> field contribution to the <i>seed</i> mass of matter. It is shown that the seed matter plays the role of a physical vacuum of the <i>Embedding</i> and determines the cosmological constant. In the special case of a conformal metric, the Maxwell-type equations reduce to the Maxwell equations themselves and a negative electromagnetic contribution. A possible experimental verification of this result is evaluated. The “redshift” effect in an electric field is also mentioned as a method for studying the vacuum and a relic electric charge. A study of the gauge structure of the presented theory is postponed to the future.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"29 2","pages":"128 - 146"},"PeriodicalIF":1.2000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Geometrization of Classical Fields (Model of Embedded Spaces)\",\"authors\":\"V. I. Noskov\",\"doi\":\"10.1134/S0202289323020081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The possibility of geometrization of the gravitational and electromagnetic fields in 4D Finsler space (the Model of Embedded Spaces—MES) is investigated. The model postulates a proper metric set of an <i>element</i> of distributed matter and asserts that space-time is a mutual physical <i>embedding</i> of such sets. The simplest MES geometry is constructed (its <i>relativistic</i> Finsler version) with a connection that depends on the properties of matter and its fields (torsion and nonmetricity are absent). The field hypothesis and the Least Action Principle of the matter-field system lead to Einstein-type and Maxwell-type equations, and their nonlinearity to the <i>anisotropic</i> field contribution to the <i>seed</i> mass of matter. It is shown that the seed matter plays the role of a physical vacuum of the <i>Embedding</i> and determines the cosmological constant. In the special case of a conformal metric, the Maxwell-type equations reduce to the Maxwell equations themselves and a negative electromagnetic contribution. A possible experimental verification of this result is evaluated. The “redshift” effect in an electric field is also mentioned as a method for studying the vacuum and a relic electric charge. A study of the gauge structure of the presented theory is postponed to the future.</p>\",\"PeriodicalId\":583,\"journal\":{\"name\":\"Gravitation and Cosmology\",\"volume\":\"29 2\",\"pages\":\"128 - 146\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gravitation and Cosmology\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0202289323020081\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitation and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0202289323020081","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
On Geometrization of Classical Fields (Model of Embedded Spaces)
The possibility of geometrization of the gravitational and electromagnetic fields in 4D Finsler space (the Model of Embedded Spaces—MES) is investigated. The model postulates a proper metric set of an element of distributed matter and asserts that space-time is a mutual physical embedding of such sets. The simplest MES geometry is constructed (its relativistic Finsler version) with a connection that depends on the properties of matter and its fields (torsion and nonmetricity are absent). The field hypothesis and the Least Action Principle of the matter-field system lead to Einstein-type and Maxwell-type equations, and their nonlinearity to the anisotropic field contribution to the seed mass of matter. It is shown that the seed matter plays the role of a physical vacuum of the Embedding and determines the cosmological constant. In the special case of a conformal metric, the Maxwell-type equations reduce to the Maxwell equations themselves and a negative electromagnetic contribution. A possible experimental verification of this result is evaluated. The “redshift” effect in an electric field is also mentioned as a method for studying the vacuum and a relic electric charge. A study of the gauge structure of the presented theory is postponed to the future.
期刊介绍:
Gravitation and Cosmology is a peer-reviewed periodical, dealing with the full range of topics of gravitational physics and relativistic cosmology and published under the auspices of the Russian Gravitation Society and Peoples’ Friendship University of Russia. The journal publishes research papers, review articles and brief communications on the following fields: theoretical (classical and quantum) gravitation; relativistic astrophysics and cosmology, exact solutions and modern mathematical methods in gravitation and cosmology, including Lie groups, geometry and topology; unification theories including gravitation; fundamental physical constants and their possible variations; fundamental gravity experiments on Earth and in space; related topics. It also publishes selected old papers which have not lost their topicality but were previously published only in Russian and were not available to the worldwide research community