希夫碱金属钌配合物的合成与应用

IF 8.6 2区 化学 Q1 Chemistry Topics in Current Chemistry Pub Date : 2021-06-10 DOI:10.1007/s41061-021-00342-w
Anmol Singh, Pranjit Barman
{"title":"希夫碱金属钌配合物的合成与应用","authors":"Anmol Singh,&nbsp;Pranjit Barman","doi":"10.1007/s41061-021-00342-w","DOIUrl":null,"url":null,"abstract":"<p>This review concentrates on recent developments in ruthenium Schiff bases, whose steric and electronic characteristics can be manipulated easily by selecting suitable condensing aldehydes or ketones and primary amines, and their metal complexes. Ruthenium metal-based complexes and Schiff base ligands are rapidly becoming conventionally considered for biological applications (antioxidant, anticancer, antimicrobial), in catalysis, in functional materials, in sensors, and as pigments for dyes. Ruthenium complexes exhibit a broad variety of activities concerning simple Schiff base ligands. This may be due to the octahedral bonding of both Ru(II) and Ru(III) complexes, which acquire an extended reservoir of a three-dimensional framework, providing the potential for an elevated degree of site selectivity for binding to their biological targets. This review provides an overview of this field, and intends to highlight both ligand design and synthetic methodology development, as well as significant applications of these metal complexes. In this review, we summarize our work on the development of ruthenium complexes, which was performed over the last few years.</p>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-021-00342-w","citationCount":"29","resultStr":"{\"title\":\"Recent Advances in Schiff Base Ruthenium Metal Complexes: Synthesis and Applications\",\"authors\":\"Anmol Singh,&nbsp;Pranjit Barman\",\"doi\":\"10.1007/s41061-021-00342-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review concentrates on recent developments in ruthenium Schiff bases, whose steric and electronic characteristics can be manipulated easily by selecting suitable condensing aldehydes or ketones and primary amines, and their metal complexes. Ruthenium metal-based complexes and Schiff base ligands are rapidly becoming conventionally considered for biological applications (antioxidant, anticancer, antimicrobial), in catalysis, in functional materials, in sensors, and as pigments for dyes. Ruthenium complexes exhibit a broad variety of activities concerning simple Schiff base ligands. This may be due to the octahedral bonding of both Ru(II) and Ru(III) complexes, which acquire an extended reservoir of a three-dimensional framework, providing the potential for an elevated degree of site selectivity for binding to their biological targets. This review provides an overview of this field, and intends to highlight both ligand design and synthetic methodology development, as well as significant applications of these metal complexes. In this review, we summarize our work on the development of ruthenium complexes, which was performed over the last few years.</p>\",\"PeriodicalId\":802,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41061-021-00342-w\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-021-00342-w\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-021-00342-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 29

摘要

本文综述了钌希夫碱的最新研究进展,通过选择合适的缩合醛或酮和伯胺及其金属配合物,可以很容易地控制其空间和电子特性。钌金属配合物和希夫碱配体正迅速成为传统的生物应用(抗氧化、抗癌、抗菌)、催化、功能材料、传感器和染料颜料。钌配合物在简单的希夫碱配体上表现出多种活性。这可能是由于Ru(II)和Ru(III)配合物的八面体键合,它们获得了一个扩展的三维框架储存库,为结合其生物靶标提供了更高程度的位点选择性。本文综述了这一领域的研究进展,重点介绍了配体设计和合成方法的发展,以及这些金属配合物的重要应用。本文对近年来钌配合物的研究进展进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Advances in Schiff Base Ruthenium Metal Complexes: Synthesis and Applications

This review concentrates on recent developments in ruthenium Schiff bases, whose steric and electronic characteristics can be manipulated easily by selecting suitable condensing aldehydes or ketones and primary amines, and their metal complexes. Ruthenium metal-based complexes and Schiff base ligands are rapidly becoming conventionally considered for biological applications (antioxidant, anticancer, antimicrobial), in catalysis, in functional materials, in sensors, and as pigments for dyes. Ruthenium complexes exhibit a broad variety of activities concerning simple Schiff base ligands. This may be due to the octahedral bonding of both Ru(II) and Ru(III) complexes, which acquire an extended reservoir of a three-dimensional framework, providing the potential for an elevated degree of site selectivity for binding to their biological targets. This review provides an overview of this field, and intends to highlight both ligand design and synthetic methodology development, as well as significant applications of these metal complexes. In this review, we summarize our work on the development of ruthenium complexes, which was performed over the last few years.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry 化学-化学综合
CiteScore
11.70
自引率
1.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science. Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community. In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.
期刊最新文献
Schiff Base-Based Molybdenum Complexes as Green Catalyst in the Epoxidation Reaction: A Minireview Recent Advances in the Synthesis of Acyclic Nucleosides and Their Therapeutic Applications The Benzoxazole Heterocycle: A Comprehensive Review of the Most Recent Medicinal Chemistry Developments of Antiproliferative, Brain-Penetrant, and Anti-inflammatory Agents Unveiling the Significance of tert-Butoxides in Transition Metal-Free Cross-Coupling Reactions Research Progress of Deep-Red to Near-Infrared Electroluminescent Materials Based on Organic Cyclometallated Platinum(II) Complexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1