{"title":"Određivanje svojstava obradivosti toplinski modificiranog drva sibirskog bora (Pinus sibirica)","authors":"Umit Ergin, Sait Dundar Sofuoglu","doi":"10.5552/drvind.2023.0003","DOIUrl":null,"url":null,"abstract":"The main objective of this study is to determine the effect of heat treatment on the machiningproperties of solid wood material and determine the optimum cutting parameters to obtain surfaces with minimum surface roughness. In line with this goal, Siberian pine (Pinus sibirica) wood species, widely used in the woodworking and furniture industry, was chosen as the experimental material. The heat-treated (at a temperature of 190 °C for 2 hours) and untreated samples were machined using two different cutters (carbide upcut milling cutter and carbide compression milling cutter) with 5 mm diameter at 1000, 1500 and 2000 mm/min feeds, 8000, 12000, 16000 rpm spindle speed, 50, 75 and 100 % stepover on the CNC machine. Surface roughness values (Ra and Rz) were measured to evaluate the obtained surfaces according to ISO 468 (2009), ISO 3274 (2005), and ISO 4287 (1997) using a contact profilometer. When the data was evaluated in general, the lowest roughness value for Ra occurred in upcut milling cutter, with 50% stepover, 12000 rpm, 1000 mm/min feed on untreated solid wood material. The highest roughness value for Ra occurred in a compression milling cutter, with 100 % stepover, 16000 rpm, 2000 mm/min feed on heat-treated solid wood material. It has been observed that the feed is the most critical parameter affecting the surface roughness.","PeriodicalId":11427,"journal":{"name":"Drvna Industrija","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drvna Industrija","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5552/drvind.2023.0003","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Određivanje svojstava obradivosti toplinski modificiranog drva sibirskog bora (Pinus sibirica)
The main objective of this study is to determine the effect of heat treatment on the machiningproperties of solid wood material and determine the optimum cutting parameters to obtain surfaces with minimum surface roughness. In line with this goal, Siberian pine (Pinus sibirica) wood species, widely used in the woodworking and furniture industry, was chosen as the experimental material. The heat-treated (at a temperature of 190 °C for 2 hours) and untreated samples were machined using two different cutters (carbide upcut milling cutter and carbide compression milling cutter) with 5 mm diameter at 1000, 1500 and 2000 mm/min feeds, 8000, 12000, 16000 rpm spindle speed, 50, 75 and 100 % stepover on the CNC machine. Surface roughness values (Ra and Rz) were measured to evaluate the obtained surfaces according to ISO 468 (2009), ISO 3274 (2005), and ISO 4287 (1997) using a contact profilometer. When the data was evaluated in general, the lowest roughness value for Ra occurred in upcut milling cutter, with 50% stepover, 12000 rpm, 1000 mm/min feed on untreated solid wood material. The highest roughness value for Ra occurred in a compression milling cutter, with 100 % stepover, 16000 rpm, 2000 mm/min feed on heat-treated solid wood material. It has been observed that the feed is the most critical parameter affecting the surface roughness.
期刊介绍:
"Drvna industrija" ("Wood Industry") journal publishes original scientific and review papers, short notes, professional papers, conference papers, reports, professional information, bibliographical and survey articles and general notes relating to the forestry exploitation, biology, chemistry, physics and technology of wood, pulp and paper and wood components, including production, management and marketing aspects in the woodworking industry.