含有CRAC基序的多肽与不同组成膜中脂质的相互作用

P. E. Volynsky, T. R. Galimzyanov, S. A. Akimov
{"title":"含有CRAC基序的多肽与不同组成膜中脂质的相互作用","authors":"P. E. Volynsky,&nbsp;T. R. Galimzyanov,&nbsp;S. A. Akimov","doi":"10.1134/S1990747821010074","DOIUrl":null,"url":null,"abstract":"<p>The lateral distribution of integral and peripheral proteins, as well as lipids in the plasma membranes of mammalian cells is extremely heterogeneous. It is believed that various lipid-protein domains are formed in membranes. Domains enriched in sphingomyelin and cholesterol are called rafts. It is assumed that the distribution of proteins into rafts is largely related to the presence in their primary sequence of a specific amino acid region called the CRAC motif, which is responsible for cholesterol binding. In this work, the interaction of two peptides containing CRAC motifs in their structure with membranes of different compositions was studied by means of molecular dynamics. It has been shown that the average number of lipid molecules in contact with each peptide is proportional to the mole fraction of lipid in the membrane. The predominant interaction of peptides with cholesterol was not observed. In addition, cholesterol did not form long-lived contacts with any amino acid or amino acid sequence. We suppose that in some cases the predominant lateral distribution of peptides and proteins containing CRAC motifs into rafts may be due to amphipathicity of the CRAC motif rather than due to specific strong binding of cholesterol.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"15 2","pages":"120 - 129"},"PeriodicalIF":1.1000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1990747821010074.pdf","citationCount":"0","resultStr":"{\"title\":\"Interaction of Peptides Containing CRAC Motifs with Lipids in Membranes of Various Composition\",\"authors\":\"P. E. Volynsky,&nbsp;T. R. Galimzyanov,&nbsp;S. A. Akimov\",\"doi\":\"10.1134/S1990747821010074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The lateral distribution of integral and peripheral proteins, as well as lipids in the plasma membranes of mammalian cells is extremely heterogeneous. It is believed that various lipid-protein domains are formed in membranes. Domains enriched in sphingomyelin and cholesterol are called rafts. It is assumed that the distribution of proteins into rafts is largely related to the presence in their primary sequence of a specific amino acid region called the CRAC motif, which is responsible for cholesterol binding. In this work, the interaction of two peptides containing CRAC motifs in their structure with membranes of different compositions was studied by means of molecular dynamics. It has been shown that the average number of lipid molecules in contact with each peptide is proportional to the mole fraction of lipid in the membrane. The predominant interaction of peptides with cholesterol was not observed. In addition, cholesterol did not form long-lived contacts with any amino acid or amino acid sequence. We suppose that in some cases the predominant lateral distribution of peptides and proteins containing CRAC motifs into rafts may be due to amphipathicity of the CRAC motif rather than due to specific strong binding of cholesterol.</p>\",\"PeriodicalId\":484,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"volume\":\"15 2\",\"pages\":\"120 - 129\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S1990747821010074.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990747821010074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747821010074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

整体和外周蛋白的横向分布,以及哺乳动物细胞质膜中的脂质是极不均匀的。人们认为膜上形成了各种脂质蛋白结构域。富含鞘磷脂和胆固醇的结构域称为筏。据推测,蛋白质在筏中的分布在很大程度上与它们的初级序列中存在一种称为CRAC基序的特定氨基酸区域有关,该区域负责胆固醇的结合。本文采用分子动力学的方法研究了两种结构上含有CRAC基序的肽与不同组成膜的相互作用。已经证明,与每个肽接触的脂质分子的平均数量与膜中脂质的摩尔分数成正比。没有观察到多肽与胆固醇的主要相互作用。此外,胆固醇不会与任何氨基酸或氨基酸序列形成长期接触。我们认为,在某些情况下,含有CRAC基序的肽和蛋白质在筏中的主要横向分布可能是由于CRAC基序的两致病性,而不是由于胆固醇的特异性强结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interaction of Peptides Containing CRAC Motifs with Lipids in Membranes of Various Composition

The lateral distribution of integral and peripheral proteins, as well as lipids in the plasma membranes of mammalian cells is extremely heterogeneous. It is believed that various lipid-protein domains are formed in membranes. Domains enriched in sphingomyelin and cholesterol are called rafts. It is assumed that the distribution of proteins into rafts is largely related to the presence in their primary sequence of a specific amino acid region called the CRAC motif, which is responsible for cholesterol binding. In this work, the interaction of two peptides containing CRAC motifs in their structure with membranes of different compositions was studied by means of molecular dynamics. It has been shown that the average number of lipid molecules in contact with each peptide is proportional to the mole fraction of lipid in the membrane. The predominant interaction of peptides with cholesterol was not observed. In addition, cholesterol did not form long-lived contacts with any amino acid or amino acid sequence. We suppose that in some cases the predominant lateral distribution of peptides and proteins containing CRAC motifs into rafts may be due to amphipathicity of the CRAC motif rather than due to specific strong binding of cholesterol.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
28
期刊介绍: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology   is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.
期刊最新文献
The Rhodopsin Project To the 90th Anniversary of the Birth of Academician Yuri Anatolievich Ovchinnikov Alterations of Store-Operated Calcium Entry in Neurodegenerative Pathologies: History, Facts, and Prospects Structural Studies of Ion Channels: Achievements, Problems, and Perspectives Structure and Functions of the OTOP1 Proton Channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1