{"title":"基于模型的企业利用范畴理论","authors":"S. Kovalyov","doi":"10.25728/ASSA.2020.20.1.781","DOIUrl":null,"url":null,"abstract":"A mathematical framework based on category theory is proposed to formally describe and explore procedures of modeling engineering products and processes that comprise operation of a model-oriented enterprise. The framework is intended to provide interoperability across a variety of engineering modeling languages and tools, supplying them with a common abstract foundation capable to represent, generate, and verify diverse design and production knowledge. The framework is leveraged via algebraic representation of product configurations as diagrams in categories with models as objects and descriptions of actions involved into products assembly as morphisms. Relevance of the framework is justified by appealing to systems engineering standards such as IEC 81346. Category theoretical methods for solving direct assembly problems that consist in constructing a product model from a given configuration are presented. Specifically, solutions are obtained via the universal construction called a colimit of a diagram. Much attention is then paid to stating and solving inverse assembly problems that consist in recovery and subsequent optimization of the configuration from the product model and assembly actions. Inverse problem solving is in demand for generative design, viz. an emerging fully automatic product development and manufacturing technology. Example solutions to direct and inverse problems are described in categories that represent two major areas of model-based enterprise operation: solid body geometric modeling of mechanical products and discrete-event simulation of production processes.","PeriodicalId":39095,"journal":{"name":"Advances in Systems Science and Applications","volume":"20 1","pages":"50-65"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leveraging Category Theory in Model Based Enterprise\",\"authors\":\"S. Kovalyov\",\"doi\":\"10.25728/ASSA.2020.20.1.781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical framework based on category theory is proposed to formally describe and explore procedures of modeling engineering products and processes that comprise operation of a model-oriented enterprise. The framework is intended to provide interoperability across a variety of engineering modeling languages and tools, supplying them with a common abstract foundation capable to represent, generate, and verify diverse design and production knowledge. The framework is leveraged via algebraic representation of product configurations as diagrams in categories with models as objects and descriptions of actions involved into products assembly as morphisms. Relevance of the framework is justified by appealing to systems engineering standards such as IEC 81346. Category theoretical methods for solving direct assembly problems that consist in constructing a product model from a given configuration are presented. Specifically, solutions are obtained via the universal construction called a colimit of a diagram. Much attention is then paid to stating and solving inverse assembly problems that consist in recovery and subsequent optimization of the configuration from the product model and assembly actions. Inverse problem solving is in demand for generative design, viz. an emerging fully automatic product development and manufacturing technology. Example solutions to direct and inverse problems are described in categories that represent two major areas of model-based enterprise operation: solid body geometric modeling of mechanical products and discrete-event simulation of production processes.\",\"PeriodicalId\":39095,\"journal\":{\"name\":\"Advances in Systems Science and Applications\",\"volume\":\"20 1\",\"pages\":\"50-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Systems Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25728/ASSA.2020.20.1.781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/ASSA.2020.20.1.781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Leveraging Category Theory in Model Based Enterprise
A mathematical framework based on category theory is proposed to formally describe and explore procedures of modeling engineering products and processes that comprise operation of a model-oriented enterprise. The framework is intended to provide interoperability across a variety of engineering modeling languages and tools, supplying them with a common abstract foundation capable to represent, generate, and verify diverse design and production knowledge. The framework is leveraged via algebraic representation of product configurations as diagrams in categories with models as objects and descriptions of actions involved into products assembly as morphisms. Relevance of the framework is justified by appealing to systems engineering standards such as IEC 81346. Category theoretical methods for solving direct assembly problems that consist in constructing a product model from a given configuration are presented. Specifically, solutions are obtained via the universal construction called a colimit of a diagram. Much attention is then paid to stating and solving inverse assembly problems that consist in recovery and subsequent optimization of the configuration from the product model and assembly actions. Inverse problem solving is in demand for generative design, viz. an emerging fully automatic product development and manufacturing technology. Example solutions to direct and inverse problems are described in categories that represent two major areas of model-based enterprise operation: solid body geometric modeling of mechanical products and discrete-event simulation of production processes.
期刊介绍:
Advances in Systems Science and Applications (ASSA) is an international peer-reviewed open-source online academic journal. Its scope covers all major aspects of systems (and processes) analysis, modeling, simulation, and control, ranging from theoretical and methodological developments to a large variety of application areas. Survey articles and innovative results are also welcome. ASSA is aimed at the audience of scientists, engineers and researchers working in the framework of these problems. ASSA should be a platform on which researchers will be able to communicate and discuss both their specialized issues and interdisciplinary problems of systems analysis and its applications in science and industry, including data science, artificial intelligence, material science, manufacturing, transportation, power and energy, ecology, corporate management, public governance, finance, and many others.