基于模型的企业利用范畴理论

S. Kovalyov
{"title":"基于模型的企业利用范畴理论","authors":"S. Kovalyov","doi":"10.25728/ASSA.2020.20.1.781","DOIUrl":null,"url":null,"abstract":"A mathematical framework based on category theory is proposed to formally describe and explore procedures of modeling engineering products and processes that comprise operation of a model-oriented enterprise. The framework is intended to provide interoperability across a variety of engineering modeling languages and tools, supplying them with a common abstract foundation capable to represent, generate, and verify diverse design and production knowledge. The framework is leveraged via algebraic representation of product configurations as diagrams in categories with models as objects and descriptions of actions involved into products assembly as morphisms. Relevance of the framework is justified by appealing to systems engineering standards such as IEC 81346. Category theoretical methods for solving direct assembly problems that consist in constructing a product model from a given configuration are presented. Specifically, solutions are obtained via the universal construction called a colimit of a diagram. Much attention is then paid to stating and solving inverse assembly problems that consist in recovery and subsequent optimization of the configuration from the product model and assembly actions. Inverse problem solving is in demand for generative design, viz. an emerging fully automatic product development and manufacturing technology. Example solutions to direct and inverse problems are described in categories that represent two major areas of model-based enterprise operation: solid body geometric modeling of mechanical products and discrete-event simulation of production processes.","PeriodicalId":39095,"journal":{"name":"Advances in Systems Science and Applications","volume":"20 1","pages":"50-65"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leveraging Category Theory in Model Based Enterprise\",\"authors\":\"S. Kovalyov\",\"doi\":\"10.25728/ASSA.2020.20.1.781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical framework based on category theory is proposed to formally describe and explore procedures of modeling engineering products and processes that comprise operation of a model-oriented enterprise. The framework is intended to provide interoperability across a variety of engineering modeling languages and tools, supplying them with a common abstract foundation capable to represent, generate, and verify diverse design and production knowledge. The framework is leveraged via algebraic representation of product configurations as diagrams in categories with models as objects and descriptions of actions involved into products assembly as morphisms. Relevance of the framework is justified by appealing to systems engineering standards such as IEC 81346. Category theoretical methods for solving direct assembly problems that consist in constructing a product model from a given configuration are presented. Specifically, solutions are obtained via the universal construction called a colimit of a diagram. Much attention is then paid to stating and solving inverse assembly problems that consist in recovery and subsequent optimization of the configuration from the product model and assembly actions. Inverse problem solving is in demand for generative design, viz. an emerging fully automatic product development and manufacturing technology. Example solutions to direct and inverse problems are described in categories that represent two major areas of model-based enterprise operation: solid body geometric modeling of mechanical products and discrete-event simulation of production processes.\",\"PeriodicalId\":39095,\"journal\":{\"name\":\"Advances in Systems Science and Applications\",\"volume\":\"20 1\",\"pages\":\"50-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Systems Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25728/ASSA.2020.20.1.781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/ASSA.2020.20.1.781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

提出了一个基于范畴理论的数学框架,以形式化地描述和探索构成面向模型企业运营的工程产品和过程的建模过程。该框架旨在提供各种工程建模语言和工具之间的互操作性,为它们提供一个通用的抽象基础,能够表示、生成和验证各种设计和生产知识。该框架通过将产品配置代数表示为类别中的图,将模型表示为对象,并将产品组装中涉及的动作描述为态射。该框架的相关性是通过诉诸系统工程标准(如IEC 81346)来证明的。提出了解决直接装配问题的范畴理论方法,这些方法包括从给定的配置构建产品模型。具体来说,解是通过被称为图的共线的通用构造来获得的。然后,人们非常关注陈述和解决逆向装配问题,这些问题包括从产品模型和装配动作中恢复和随后优化配置。逆向问题求解是生成设计的需求,即一种新兴的全自动产品开发和制造技术。正问题和反问题的示例解决方案按类别描述,代表了基于模型的企业运营的两个主要领域:机械产品的实体几何建模和生产过程的离散事件模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging Category Theory in Model Based Enterprise
A mathematical framework based on category theory is proposed to formally describe and explore procedures of modeling engineering products and processes that comprise operation of a model-oriented enterprise. The framework is intended to provide interoperability across a variety of engineering modeling languages and tools, supplying them with a common abstract foundation capable to represent, generate, and verify diverse design and production knowledge. The framework is leveraged via algebraic representation of product configurations as diagrams in categories with models as objects and descriptions of actions involved into products assembly as morphisms. Relevance of the framework is justified by appealing to systems engineering standards such as IEC 81346. Category theoretical methods for solving direct assembly problems that consist in constructing a product model from a given configuration are presented. Specifically, solutions are obtained via the universal construction called a colimit of a diagram. Much attention is then paid to stating and solving inverse assembly problems that consist in recovery and subsequent optimization of the configuration from the product model and assembly actions. Inverse problem solving is in demand for generative design, viz. an emerging fully automatic product development and manufacturing technology. Example solutions to direct and inverse problems are described in categories that represent two major areas of model-based enterprise operation: solid body geometric modeling of mechanical products and discrete-event simulation of production processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Systems Science and Applications
Advances in Systems Science and Applications Engineering-Engineering (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Advances in Systems Science and Applications (ASSA) is an international peer-reviewed open-source online academic journal. Its scope covers all major aspects of systems (and processes) analysis, modeling, simulation, and control, ranging from theoretical and methodological developments to a large variety of application areas. Survey articles and innovative results are also welcome. ASSA is aimed at the audience of scientists, engineers and researchers working in the framework of these problems. ASSA should be a platform on which researchers will be able to communicate and discuss both their specialized issues and interdisciplinary problems of systems analysis and its applications in science and industry, including data science, artificial intelligence, material science, manufacturing, transportation, power and energy, ecology, corporate management, public governance, finance, and many others.
期刊最新文献
The Model of the Production Side of the Russian Economy Deep learning techniques for detection of covid-19 using chest x-rays Using Patent Landscapes for Technology Benchmarking: A Case of 5G Networks Achieving Angular Superresolution of Control and Measurement Systems in Signal Processing The Modular Inequalities for Hardy-type Operators on Monotone Functions in Orlicz Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1