Pavithra K.C. , Preetham Kumar , Geetha M. , Sulatha V. Bhandary
{"title":"糖尿病黄斑水肿的计算机辅助诊断及眼底OCT图像研究综述","authors":"Pavithra K.C. , Preetham Kumar , Geetha M. , Sulatha V. Bhandary","doi":"10.1016/j.bbe.2022.12.005","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Diabetic Macular Edema (DME) is a potentially blinding consequence of Diabetic Retinopathy (DR) as well as the leading cause of vision loss in diabetics. DME is characterized by a buildup of </span>extracellular fluid inside the macula through hyperpermeable vessels. The presence of DME can be spotted at any level of DR with varying degrees of severity using prominent </span>imaging modalities<span> such as Color Fundus Photography (CFP) and Optical Coherence Tomography<span><span> (OCT). Computerized approaches for screening eye disorders appear to be beneficial, as they provide doctors with detailed insights into abnormalities. Such a system for the evaluation of retinal images<span> can function as a stand-alone disease monitoring system. This review reports the state-of-art automated DME detection methods with traditional Machine Learning (ML) and Deep Learning (DL) techniques employing retinal fundus or OCT images. The paper provides a list of public retinal OCT and fundus imaging datasets for DME detection. In addition, the paper describes the dynamics of advancements in presented methods adopted in the past along with their </span></span>strengths and limitations to highlight the insufficiencies that could be addressed in future investigations.</span></span></p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Computer aided diagnosis of diabetic macular edema in retinal fundus and OCT images: A review\",\"authors\":\"Pavithra K.C. , Preetham Kumar , Geetha M. , Sulatha V. Bhandary\",\"doi\":\"10.1016/j.bbe.2022.12.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Diabetic Macular Edema (DME) is a potentially blinding consequence of Diabetic Retinopathy (DR) as well as the leading cause of vision loss in diabetics. DME is characterized by a buildup of </span>extracellular fluid inside the macula through hyperpermeable vessels. The presence of DME can be spotted at any level of DR with varying degrees of severity using prominent </span>imaging modalities<span> such as Color Fundus Photography (CFP) and Optical Coherence Tomography<span><span> (OCT). Computerized approaches for screening eye disorders appear to be beneficial, as they provide doctors with detailed insights into abnormalities. Such a system for the evaluation of retinal images<span> can function as a stand-alone disease monitoring system. This review reports the state-of-art automated DME detection methods with traditional Machine Learning (ML) and Deep Learning (DL) techniques employing retinal fundus or OCT images. The paper provides a list of public retinal OCT and fundus imaging datasets for DME detection. In addition, the paper describes the dynamics of advancements in presented methods adopted in the past along with their </span></span>strengths and limitations to highlight the insufficiencies that could be addressed in future investigations.</span></span></p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521622001164\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521622001164","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Computer aided diagnosis of diabetic macular edema in retinal fundus and OCT images: A review
Diabetic Macular Edema (DME) is a potentially blinding consequence of Diabetic Retinopathy (DR) as well as the leading cause of vision loss in diabetics. DME is characterized by a buildup of extracellular fluid inside the macula through hyperpermeable vessels. The presence of DME can be spotted at any level of DR with varying degrees of severity using prominent imaging modalities such as Color Fundus Photography (CFP) and Optical Coherence Tomography (OCT). Computerized approaches for screening eye disorders appear to be beneficial, as they provide doctors with detailed insights into abnormalities. Such a system for the evaluation of retinal images can function as a stand-alone disease monitoring system. This review reports the state-of-art automated DME detection methods with traditional Machine Learning (ML) and Deep Learning (DL) techniques employing retinal fundus or OCT images. The paper provides a list of public retinal OCT and fundus imaging datasets for DME detection. In addition, the paper describes the dynamics of advancements in presented methods adopted in the past along with their strengths and limitations to highlight the insufficiencies that could be addressed in future investigations.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.