面板数据单元根测试中缺少值

IF 1.1 Q3 ECONOMICS Econometrics Pub Date : 2022-03-16 DOI:10.3390/econometrics10010012
Yiannis Karavias, Elias Tzavalis, Haotian Zhang
{"title":"面板数据单元根测试中缺少值","authors":"Yiannis Karavias, Elias Tzavalis, Haotian Zhang","doi":"10.3390/econometrics10010012","DOIUrl":null,"url":null,"abstract":"Missing data or missing values are a common phenomenon in applied panel data research and of great interest for panel data unit root testing. The standard approach in the literature is to balance the panel by removing units and/or trimming a common time period for all units. However, this approach can be costly in terms of lost information. Instead, existing panel unit root tests could be extended to the case of unbalanced panels, but this is often difficult because the missing observations affect the bias correction which is usually involved. This paper contributes to the literature in two ways; it extends two popular panel unit root tests to allow for missing values, and secondly, it employs asymptotic local power functions to analytically study the impact of various missing-value methods on power. We find that zeroing-out the missing observations is the method that results in the greater test power, and that this result holds for all deterministic component specifications, such as intercepts, trends and structural breaks.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Missing Values in Panel Data Unit Root Tests\",\"authors\":\"Yiannis Karavias, Elias Tzavalis, Haotian Zhang\",\"doi\":\"10.3390/econometrics10010012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Missing data or missing values are a common phenomenon in applied panel data research and of great interest for panel data unit root testing. The standard approach in the literature is to balance the panel by removing units and/or trimming a common time period for all units. However, this approach can be costly in terms of lost information. Instead, existing panel unit root tests could be extended to the case of unbalanced panels, but this is often difficult because the missing observations affect the bias correction which is usually involved. This paper contributes to the literature in two ways; it extends two popular panel unit root tests to allow for missing values, and secondly, it employs asymptotic local power functions to analytically study the impact of various missing-value methods on power. We find that zeroing-out the missing observations is the method that results in the greater test power, and that this result holds for all deterministic component specifications, such as intercepts, trends and structural breaks.\",\"PeriodicalId\":11499,\"journal\":{\"name\":\"Econometrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/econometrics10010012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics10010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

摘要

缺失数据或缺失值是应用面板数据研究中的常见现象,对面板数据单元根测试具有重要意义。文献中的标准方法是通过移除单元和/或修剪所有单元的公共时间段来平衡面板。然而,就信息丢失而言,这种方法可能代价高昂。相反,现有的面板单位根测试可以扩展到不平衡面板的情况,但这通常很困难,因为缺失的观测值会影响通常涉及的偏差校正。本文从两个方面对文献进行了贡献;它扩展了两个流行的面板单位根检验以允许缺失值。其次,它使用渐近局部幂函数来分析研究各种缺失值方法对幂的影响。我们发现,将遗漏的观测值归零是导致更大测试功率的方法,并且这一结果适用于所有确定性组件规范,如截距、趋势和结构断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Missing Values in Panel Data Unit Root Tests
Missing data or missing values are a common phenomenon in applied panel data research and of great interest for panel data unit root testing. The standard approach in the literature is to balance the panel by removing units and/or trimming a common time period for all units. However, this approach can be costly in terms of lost information. Instead, existing panel unit root tests could be extended to the case of unbalanced panels, but this is often difficult because the missing observations affect the bias correction which is usually involved. This paper contributes to the literature in two ways; it extends two popular panel unit root tests to allow for missing values, and secondly, it employs asymptotic local power functions to analytically study the impact of various missing-value methods on power. We find that zeroing-out the missing observations is the method that results in the greater test power, and that this result holds for all deterministic component specifications, such as intercepts, trends and structural breaks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
期刊最新文献
Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality Signs of Fluctuations in Energy Prices and Energy Stock-Market Volatility in Brazil and in the US Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach Is It Sufficient to Select the Optimal Class Number Based Only on Information Criteria in Fixed- and Random-Parameter Latent Class Discrete Choice Modeling Approaches? Instrumental Variable Method for Regularized Estimation in Generalized Linear Measurement Error Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1