{"title":"一种高效纳米生化传感器检测水中超低浓度四环素类抗生素残留的新途径","authors":"Alwan M. Alwan, Layla A. Wali, Khulood K. Hasan","doi":"10.1007/s13404-020-00272-3","DOIUrl":null,"url":null,"abstract":"<p>This study reports a new detection process for sensing ultra-low concentrations of tetracycline (TC), using a hot spot surface-enhanced Raman scattering (SERS) sensor. A gold nanoparticles/ macroporous silicon (Au NPs/macroPSi) hot spot SERS sensor was fabricated using a very simple and low cost method. The SERS signal was investigated using Au NPs/macroPSi hot spot SERS sensor for efficient detection of TC antibiotics at lower concentrations of (10<sup>?3</sup>–10<sup>?9</sup>) mol/L. The sensor showed an excellent performance for TC detection with an enhancement factor (EF) of 2?×?10<sup>8</sup>, ultra-low detection limit of 10<sup>?9</sup>?mol/L, and very high reproducibility with a relative standard deviation of 2%. The effect of the pH value on the behavior of the SERS spectra for TC antibiotic was evaluated, and it was found that pH values of 5 and 6 were the best for the detection process of TC antibiotic.</p>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13404-020-00272-3","citationCount":"10","resultStr":"{\"title\":\"A new route for developing highly efficient nano biochemical sensors for detecting ultra-low concentrations of tetracycline antibiotic residue in water\",\"authors\":\"Alwan M. Alwan, Layla A. Wali, Khulood K. Hasan\",\"doi\":\"10.1007/s13404-020-00272-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study reports a new detection process for sensing ultra-low concentrations of tetracycline (TC), using a hot spot surface-enhanced Raman scattering (SERS) sensor. A gold nanoparticles/ macroporous silicon (Au NPs/macroPSi) hot spot SERS sensor was fabricated using a very simple and low cost method. The SERS signal was investigated using Au NPs/macroPSi hot spot SERS sensor for efficient detection of TC antibiotics at lower concentrations of (10<sup>?3</sup>–10<sup>?9</sup>) mol/L. The sensor showed an excellent performance for TC detection with an enhancement factor (EF) of 2?×?10<sup>8</sup>, ultra-low detection limit of 10<sup>?9</sup>?mol/L, and very high reproducibility with a relative standard deviation of 2%. The effect of the pH value on the behavior of the SERS spectra for TC antibiotic was evaluated, and it was found that pH values of 5 and 6 were the best for the detection process of TC antibiotic.</p>\",\"PeriodicalId\":55086,\"journal\":{\"name\":\"Gold Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2020-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13404-020-00272-3\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gold Bulletin\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13404-020-00272-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-020-00272-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
A new route for developing highly efficient nano biochemical sensors for detecting ultra-low concentrations of tetracycline antibiotic residue in water
This study reports a new detection process for sensing ultra-low concentrations of tetracycline (TC), using a hot spot surface-enhanced Raman scattering (SERS) sensor. A gold nanoparticles/ macroporous silicon (Au NPs/macroPSi) hot spot SERS sensor was fabricated using a very simple and low cost method. The SERS signal was investigated using Au NPs/macroPSi hot spot SERS sensor for efficient detection of TC antibiotics at lower concentrations of (10?3–10?9) mol/L. The sensor showed an excellent performance for TC detection with an enhancement factor (EF) of 2?×?108, ultra-low detection limit of 10?9?mol/L, and very high reproducibility with a relative standard deviation of 2%. The effect of the pH value on the behavior of the SERS spectra for TC antibiotic was evaluated, and it was found that pH values of 5 and 6 were the best for the detection process of TC antibiotic.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.