基于面部情绪的视频对象检测产品推荐

Kshitiz Badola, Ajay J. Joshi, Deepesh Sengar
{"title":"基于面部情绪的视频对象检测产品推荐","authors":"Kshitiz Badola, Ajay J. Joshi, Deepesh Sengar","doi":"10.5121/csit.2020.102006","DOIUrl":null,"url":null,"abstract":"In today’s world, with the increasing demand of products and their growing productivity from producers, customers sometimes failed to decide whether they are interested in buying a particular product or not. So author, here proposed a framework which deals with the buying of only items of interest, for a consumer. In our feature-set, whenever any consumer tends to watch any video from YouTube, it results in breakdown into several frames (frames per second), and from there we use object detection technique to detect each and every object in a particular frame, and then to find whether our consumer is interested in that particular object or not, we use facial emotion detector to check whether our user is happy, surprised, neutral or any other emotion. After viewing those products which are present in a frame of a video. Merging only those items of interest which were tend to fall for consumer’s positive choices (emotions), we then used Amazon online marketing technique to recommend products selected by our framework.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Product Recommendation using Object Detection from Video, Based on Facial Emotions\",\"authors\":\"Kshitiz Badola, Ajay J. Joshi, Deepesh Sengar\",\"doi\":\"10.5121/csit.2020.102006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today’s world, with the increasing demand of products and their growing productivity from producers, customers sometimes failed to decide whether they are interested in buying a particular product or not. So author, here proposed a framework which deals with the buying of only items of interest, for a consumer. In our feature-set, whenever any consumer tends to watch any video from YouTube, it results in breakdown into several frames (frames per second), and from there we use object detection technique to detect each and every object in a particular frame, and then to find whether our consumer is interested in that particular object or not, we use facial emotion detector to check whether our user is happy, surprised, neutral or any other emotion. After viewing those products which are present in a frame of a video. Merging only those items of interest which were tend to fall for consumer’s positive choices (emotions), we then used Amazon online marketing technique to recommend products selected by our framework.\",\"PeriodicalId\":72673,\"journal\":{\"name\":\"Computer science & information technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer science & information technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2020.102006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2020.102006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当今世界,随着产品需求的增加和生产者生产率的提高,客户有时无法决定他们是否有兴趣购买特定的产品。因此,作者在此提出了一个框架来处理消费者只购买感兴趣的物品。在我们的功能集中,每当任何消费者倾向于观看YouTube上的任何视频时,它都会导致分解为几帧(每秒帧),从那里我们使用对象检测技术来检测特定帧中的每个对象,然后发现我们的消费者是否对该特定对象感兴趣,我们使用面部情绪检测器来检查我们的用户是否高兴,惊讶,中立或任何其他情绪。在观看了这些产品后,这些产品出现在视频的框架中。只合并那些消费者倾向于积极选择(情感)的感兴趣的项目,然后我们使用亚马逊在线营销技术来推荐我们的框架选择的产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Product Recommendation using Object Detection from Video, Based on Facial Emotions
In today’s world, with the increasing demand of products and their growing productivity from producers, customers sometimes failed to decide whether they are interested in buying a particular product or not. So author, here proposed a framework which deals with the buying of only items of interest, for a consumer. In our feature-set, whenever any consumer tends to watch any video from YouTube, it results in breakdown into several frames (frames per second), and from there we use object detection technique to detect each and every object in a particular frame, and then to find whether our consumer is interested in that particular object or not, we use facial emotion detector to check whether our user is happy, surprised, neutral or any other emotion. After viewing those products which are present in a frame of a video. Merging only those items of interest which were tend to fall for consumer’s positive choices (emotions), we then used Amazon online marketing technique to recommend products selected by our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis. Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis Lattice Based Group Key Exchange Protocol in the Standard Model The 5 Dimensions of Problem Solving using DINNA Diagram: Double Ishikawa and Naze Naze Analysis Appraisal Study of Similarity-Based and Embedding-Based Link Prediction Methods on Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1