{"title":"一种基于选择性映射的可见光通信直流偏置光正交频分复用系统的复杂度降低新方案","authors":"Chakravarthy Gunturu, Sivaprasad Valluri","doi":"10.1049/ote2.12074","DOIUrl":null,"url":null,"abstract":"<p>Visible light communication (VLC) has emerged as a good accompaniment to radio-frequency (RF) technologies by deploying multicarrier schemes such as orthogonal frequency division multiplexing (OFDM). However, the coherent summation of carriers in the OFDM system leads to a high peak-to-average-power ratio (PAPR), causing non-linear clipping distortion at the transmitting light-emitting diode. This intricacy becomes a potential barrier for intensity modulation and limits the VLC systems' bandwidth. In the literature, non-distorting PAPR lowering approaches, such as the selective mapping (SLM) approach, have been confirmed as the most effective strategy for reducing ineludible high PAPR in optical OFDM systems among all other available techniques. Besides its astounding performance, the computational complexity also becomes a major complication in SLM due to the generation of multiple candidates. This paper proposes a computational complexity minimisation approach using inherit system properties in the SLM-based PAPR suppression method for VLC systems, where the phase sequence vectors are considered periodic. The alternative direct current-biased optical orthogonal frequency division multiplexing candidates for the single frequency-domain data block are generated with the periodic phase rotation vector. The evaluation of the complexity analysis and the simulation results shows that the mitigation of computational complexity surpasses the standard SLM technique.</p>","PeriodicalId":13408,"journal":{"name":"Iet Optoelectronics","volume":"16 5","pages":"207-217"},"PeriodicalIF":2.3000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12074","citationCount":"4","resultStr":"{\"title\":\"A new complexity reduction scheme in selective mapping-based visible light communication direct current-biased optical orthogonal frequency division multiplexing systems\",\"authors\":\"Chakravarthy Gunturu, Sivaprasad Valluri\",\"doi\":\"10.1049/ote2.12074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Visible light communication (VLC) has emerged as a good accompaniment to radio-frequency (RF) technologies by deploying multicarrier schemes such as orthogonal frequency division multiplexing (OFDM). However, the coherent summation of carriers in the OFDM system leads to a high peak-to-average-power ratio (PAPR), causing non-linear clipping distortion at the transmitting light-emitting diode. This intricacy becomes a potential barrier for intensity modulation and limits the VLC systems' bandwidth. In the literature, non-distorting PAPR lowering approaches, such as the selective mapping (SLM) approach, have been confirmed as the most effective strategy for reducing ineludible high PAPR in optical OFDM systems among all other available techniques. Besides its astounding performance, the computational complexity also becomes a major complication in SLM due to the generation of multiple candidates. This paper proposes a computational complexity minimisation approach using inherit system properties in the SLM-based PAPR suppression method for VLC systems, where the phase sequence vectors are considered periodic. The alternative direct current-biased optical orthogonal frequency division multiplexing candidates for the single frequency-domain data block are generated with the periodic phase rotation vector. The evaluation of the complexity analysis and the simulation results shows that the mitigation of computational complexity surpasses the standard SLM technique.</p>\",\"PeriodicalId\":13408,\"journal\":{\"name\":\"Iet Optoelectronics\",\"volume\":\"16 5\",\"pages\":\"207-217\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12074\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Optoelectronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12074\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Optoelectronics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12074","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A new complexity reduction scheme in selective mapping-based visible light communication direct current-biased optical orthogonal frequency division multiplexing systems
Visible light communication (VLC) has emerged as a good accompaniment to radio-frequency (RF) technologies by deploying multicarrier schemes such as orthogonal frequency division multiplexing (OFDM). However, the coherent summation of carriers in the OFDM system leads to a high peak-to-average-power ratio (PAPR), causing non-linear clipping distortion at the transmitting light-emitting diode. This intricacy becomes a potential barrier for intensity modulation and limits the VLC systems' bandwidth. In the literature, non-distorting PAPR lowering approaches, such as the selective mapping (SLM) approach, have been confirmed as the most effective strategy for reducing ineludible high PAPR in optical OFDM systems among all other available techniques. Besides its astounding performance, the computational complexity also becomes a major complication in SLM due to the generation of multiple candidates. This paper proposes a computational complexity minimisation approach using inherit system properties in the SLM-based PAPR suppression method for VLC systems, where the phase sequence vectors are considered periodic. The alternative direct current-biased optical orthogonal frequency division multiplexing candidates for the single frequency-domain data block are generated with the periodic phase rotation vector. The evaluation of the complexity analysis and the simulation results shows that the mitigation of computational complexity surpasses the standard SLM technique.
期刊介绍:
IET Optoelectronics publishes state of the art research papers in the field of optoelectronics and photonics. The topics that are covered by the journal include optical and optoelectronic materials, nanophotonics, metamaterials and photonic crystals, light sources (e.g. LEDs, lasers and devices for lighting), optical modulation and multiplexing, optical fibres, cables and connectors, optical amplifiers, photodetectors and optical receivers, photonic integrated circuits, photonic systems, optical signal processing and holography and displays.
Most of the papers published describe original research from universities and industrial and government laboratories. However correspondence suggesting review papers and tutorials is welcomed, as are suggestions for special issues.
IET Optoelectronics covers but is not limited to the following topics:
Optical and optoelectronic materials
Light sources, including LEDs, lasers and devices for lighting
Optical modulation and multiplexing
Optical fibres, cables and connectors
Optical amplifiers
Photodetectors and optical receivers
Photonic integrated circuits
Nanophotonics and photonic crystals
Optical signal processing
Holography
Displays