使用无监督学习实现实用的云性能调试

Q3 Computer Science Operating Systems Review (ACM) Pub Date : 2022-06-14 DOI:10.1145/3544497.3544503
Yu Gan, Mingyu Liang, Sundar Dev, David Lo, Christina Delimitrou
{"title":"使用无监督学习实现实用的云性能调试","authors":"Yu Gan, Mingyu Liang, Sundar Dev, David Lo, Christina Delimitrou","doi":"10.1145/3544497.3544503","DOIUrl":null,"url":null,"abstract":"Abstract-Cloud applications are increasingly shifting from large monolithic services to complex graphs of loosely-coupled microservices. Despite their benefits, microservices are prone to cascading performance issues, and can lead to prolonged periods of degraded performance. We present Sage, a machine learning-driven root cause analysis system for interactive cloud microservices that is both accurate and practical. We show that Sage correctly identifies the root causes of performance issues across a diverse set of microservices and takes action to address them, leading to more predictable, performant, and efficient cloud systems.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"56 1","pages":"34 - 41"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enabling Practical Cloud Performance Debugging with Unsupervised Learning\",\"authors\":\"Yu Gan, Mingyu Liang, Sundar Dev, David Lo, Christina Delimitrou\",\"doi\":\"10.1145/3544497.3544503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract-Cloud applications are increasingly shifting from large monolithic services to complex graphs of loosely-coupled microservices. Despite their benefits, microservices are prone to cascading performance issues, and can lead to prolonged periods of degraded performance. We present Sage, a machine learning-driven root cause analysis system for interactive cloud microservices that is both accurate and practical. We show that Sage correctly identifies the root causes of performance issues across a diverse set of microservices and takes action to address them, leading to more predictable, performant, and efficient cloud systems.\",\"PeriodicalId\":38935,\"journal\":{\"name\":\"Operating Systems Review (ACM)\",\"volume\":\"56 1\",\"pages\":\"34 - 41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operating Systems Review (ACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3544497.3544503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544497.3544503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

摘要云应用程序正越来越多地从大型单片服务转向松散耦合微服务的复杂图。尽管微服务有好处,但它们容易出现级联性能问题,并可能导致长时间的性能下降。我们介绍了Sage,一个用于交互式云微服务的机器学习驱动的根本原因分析系统,它既准确又实用。我们表明,Sage能够正确识别各种微服务性能问题的根本原因,并采取行动解决这些问题,从而实现更可预测、更高性能、更高效的云系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling Practical Cloud Performance Debugging with Unsupervised Learning
Abstract-Cloud applications are increasingly shifting from large monolithic services to complex graphs of loosely-coupled microservices. Despite their benefits, microservices are prone to cascading performance issues, and can lead to prolonged periods of degraded performance. We present Sage, a machine learning-driven root cause analysis system for interactive cloud microservices that is both accurate and practical. We show that Sage correctly identifies the root causes of performance issues across a diverse set of microservices and takes action to address them, leading to more predictable, performant, and efficient cloud systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operating Systems Review (ACM)
Operating Systems Review (ACM) Computer Science-Computer Networks and Communications
CiteScore
2.80
自引率
0.00%
发文量
10
期刊介绍: Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.
期刊最新文献
Disaggregated GPU Acceleration for Serverless Applications Navigating Performance-Efficiency Tradeoffs in Serverless Computing: Deduplication to the Rescue! Using Local Cache Coherence for Disaggregated Memory Systems Make It Real: An End-to-End Implementation of A Physically Disaggregated Data Center Memory disaggregation: why now and what are the challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1