Yu Gan, Mingyu Liang, Sundar Dev, David Lo, Christina Delimitrou
{"title":"使用无监督学习实现实用的云性能调试","authors":"Yu Gan, Mingyu Liang, Sundar Dev, David Lo, Christina Delimitrou","doi":"10.1145/3544497.3544503","DOIUrl":null,"url":null,"abstract":"Abstract-Cloud applications are increasingly shifting from large monolithic services to complex graphs of loosely-coupled microservices. Despite their benefits, microservices are prone to cascading performance issues, and can lead to prolonged periods of degraded performance. We present Sage, a machine learning-driven root cause analysis system for interactive cloud microservices that is both accurate and practical. We show that Sage correctly identifies the root causes of performance issues across a diverse set of microservices and takes action to address them, leading to more predictable, performant, and efficient cloud systems.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"56 1","pages":"34 - 41"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enabling Practical Cloud Performance Debugging with Unsupervised Learning\",\"authors\":\"Yu Gan, Mingyu Liang, Sundar Dev, David Lo, Christina Delimitrou\",\"doi\":\"10.1145/3544497.3544503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract-Cloud applications are increasingly shifting from large monolithic services to complex graphs of loosely-coupled microservices. Despite their benefits, microservices are prone to cascading performance issues, and can lead to prolonged periods of degraded performance. We present Sage, a machine learning-driven root cause analysis system for interactive cloud microservices that is both accurate and practical. We show that Sage correctly identifies the root causes of performance issues across a diverse set of microservices and takes action to address them, leading to more predictable, performant, and efficient cloud systems.\",\"PeriodicalId\":38935,\"journal\":{\"name\":\"Operating Systems Review (ACM)\",\"volume\":\"56 1\",\"pages\":\"34 - 41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operating Systems Review (ACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3544497.3544503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544497.3544503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Enabling Practical Cloud Performance Debugging with Unsupervised Learning
Abstract-Cloud applications are increasingly shifting from large monolithic services to complex graphs of loosely-coupled microservices. Despite their benefits, microservices are prone to cascading performance issues, and can lead to prolonged periods of degraded performance. We present Sage, a machine learning-driven root cause analysis system for interactive cloud microservices that is both accurate and practical. We show that Sage correctly identifies the root causes of performance issues across a diverse set of microservices and takes action to address them, leading to more predictable, performant, and efficient cloud systems.
期刊介绍:
Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.