C. M. Schenekemberg, T. Guimarães, A. A. Chaves, Leandro C. Coelho
{"title":"生产与库存路径问题的三线并行分割算法","authors":"C. M. Schenekemberg, T. Guimarães, A. A. Chaves, Leandro C. Coelho","doi":"10.1287/trsc.2022.0261","DOIUrl":null,"url":null,"abstract":"Production and inventory routing problems consider a single-product supply chain operating under a vendor-managed inventory system. A plant creates a production plan and vehicle routes over a planning horizon to replenish its customers at minimum cost. In this paper, we present two- and three-index formulations, implement a branch-and-cut algorithm based on each formulation, and introduce a local search matheuristic-based algorithm to solve the problem. In order to combine all benefits of each algorithm, we design a parallel framework to integrate all three fronts, called the three-front parallel branch-and-cut algorithm (3FP-B&C). We assess the performance of our method on well-known benchmark instances of the inventory routing problem (IRP) and the production routing problem (PRP). The results show that our 3FP-B&C outperforms by far other approaches from the literature. For the 956 feasible small-size IRP instances, our method proves optimality for 746, being the first exact algorithm to solve all instances with up to two vehicles. 3FP-B&C finds 949 best known solutions (BKS) with 153 new BKS (NBKS). For the large-size set, our method provides two new optimal solutions (OPT), and finds 82% of BKS, being 70% of NBKS for instances with up to five vehicles. This result is more than twice the number of BKS considering all heuristic methods from the literature combined. Finally, our 3FP-B&C finds the best lower bounds (BLB) for 1,169/1,316 instances, outperforming all previous exact algorithms. On the PRP, our method obtained 278 OPT out of the 336 instances of benchmark set of small- and medium-size instances being 19 new ones in addition to 335 BKS (74 NBKS) and 313 BLB (52 new ones). On another set of PRP with medium- and large-size instances, our algorithm finds 1,105 BKS out of 1,440 instances with 584 NBKS. Besides that, our 3FP-B&C is the first exact algorithm to solve the instances with an unlimited fleet, providing the first lower bounds for this subset with an average optimality gap of 0.61%. We also address a very large-size instance set, the second exact algorithm to address this set, outperforming the previous approach by far. Finally, a comparative analysis of each front shows the gains of the integrated approach. History: This paper has been accepted for the Transportation Science Special Issue: DIMACS Implementation Challenge: Vehicle Routing. Funding: C. M. Schenekemberg was supported by the São Paulo Research Foundation (FAPESP) [Grant 2020/07145-8]. A. A. Chaves was supported by FAPESP [Grants 2018/15417-8 and 2016/01860-1] and Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grants 312747/2021-7 and 405702/2021-3]. L. C. Coelho was supported by the Canadian Natural Sciences and Engineering Research Council [Grant 2019-00094]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0261 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Three-Front Parallel Branch-and-Cut Algorithm for Production and Inventory Routing Problems\",\"authors\":\"C. M. Schenekemberg, T. Guimarães, A. A. Chaves, Leandro C. Coelho\",\"doi\":\"10.1287/trsc.2022.0261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Production and inventory routing problems consider a single-product supply chain operating under a vendor-managed inventory system. A plant creates a production plan and vehicle routes over a planning horizon to replenish its customers at minimum cost. In this paper, we present two- and three-index formulations, implement a branch-and-cut algorithm based on each formulation, and introduce a local search matheuristic-based algorithm to solve the problem. In order to combine all benefits of each algorithm, we design a parallel framework to integrate all three fronts, called the three-front parallel branch-and-cut algorithm (3FP-B&C). We assess the performance of our method on well-known benchmark instances of the inventory routing problem (IRP) and the production routing problem (PRP). The results show that our 3FP-B&C outperforms by far other approaches from the literature. For the 956 feasible small-size IRP instances, our method proves optimality for 746, being the first exact algorithm to solve all instances with up to two vehicles. 3FP-B&C finds 949 best known solutions (BKS) with 153 new BKS (NBKS). For the large-size set, our method provides two new optimal solutions (OPT), and finds 82% of BKS, being 70% of NBKS for instances with up to five vehicles. This result is more than twice the number of BKS considering all heuristic methods from the literature combined. Finally, our 3FP-B&C finds the best lower bounds (BLB) for 1,169/1,316 instances, outperforming all previous exact algorithms. On the PRP, our method obtained 278 OPT out of the 336 instances of benchmark set of small- and medium-size instances being 19 new ones in addition to 335 BKS (74 NBKS) and 313 BLB (52 new ones). On another set of PRP with medium- and large-size instances, our algorithm finds 1,105 BKS out of 1,440 instances with 584 NBKS. Besides that, our 3FP-B&C is the first exact algorithm to solve the instances with an unlimited fleet, providing the first lower bounds for this subset with an average optimality gap of 0.61%. We also address a very large-size instance set, the second exact algorithm to address this set, outperforming the previous approach by far. Finally, a comparative analysis of each front shows the gains of the integrated approach. History: This paper has been accepted for the Transportation Science Special Issue: DIMACS Implementation Challenge: Vehicle Routing. Funding: C. M. Schenekemberg was supported by the São Paulo Research Foundation (FAPESP) [Grant 2020/07145-8]. A. A. Chaves was supported by FAPESP [Grants 2018/15417-8 and 2016/01860-1] and Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grants 312747/2021-7 and 405702/2021-3]. L. C. Coelho was supported by the Canadian Natural Sciences and Engineering Research Council [Grant 2019-00094]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0261 .\",\"PeriodicalId\":51202,\"journal\":{\"name\":\"Transportation Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2022.0261\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2022.0261","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
A Three-Front Parallel Branch-and-Cut Algorithm for Production and Inventory Routing Problems
Production and inventory routing problems consider a single-product supply chain operating under a vendor-managed inventory system. A plant creates a production plan and vehicle routes over a planning horizon to replenish its customers at minimum cost. In this paper, we present two- and three-index formulations, implement a branch-and-cut algorithm based on each formulation, and introduce a local search matheuristic-based algorithm to solve the problem. In order to combine all benefits of each algorithm, we design a parallel framework to integrate all three fronts, called the three-front parallel branch-and-cut algorithm (3FP-B&C). We assess the performance of our method on well-known benchmark instances of the inventory routing problem (IRP) and the production routing problem (PRP). The results show that our 3FP-B&C outperforms by far other approaches from the literature. For the 956 feasible small-size IRP instances, our method proves optimality for 746, being the first exact algorithm to solve all instances with up to two vehicles. 3FP-B&C finds 949 best known solutions (BKS) with 153 new BKS (NBKS). For the large-size set, our method provides two new optimal solutions (OPT), and finds 82% of BKS, being 70% of NBKS for instances with up to five vehicles. This result is more than twice the number of BKS considering all heuristic methods from the literature combined. Finally, our 3FP-B&C finds the best lower bounds (BLB) for 1,169/1,316 instances, outperforming all previous exact algorithms. On the PRP, our method obtained 278 OPT out of the 336 instances of benchmark set of small- and medium-size instances being 19 new ones in addition to 335 BKS (74 NBKS) and 313 BLB (52 new ones). On another set of PRP with medium- and large-size instances, our algorithm finds 1,105 BKS out of 1,440 instances with 584 NBKS. Besides that, our 3FP-B&C is the first exact algorithm to solve the instances with an unlimited fleet, providing the first lower bounds for this subset with an average optimality gap of 0.61%. We also address a very large-size instance set, the second exact algorithm to address this set, outperforming the previous approach by far. Finally, a comparative analysis of each front shows the gains of the integrated approach. History: This paper has been accepted for the Transportation Science Special Issue: DIMACS Implementation Challenge: Vehicle Routing. Funding: C. M. Schenekemberg was supported by the São Paulo Research Foundation (FAPESP) [Grant 2020/07145-8]. A. A. Chaves was supported by FAPESP [Grants 2018/15417-8 and 2016/01860-1] and Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grants 312747/2021-7 and 405702/2021-3]. L. C. Coelho was supported by the Canadian Natural Sciences and Engineering Research Council [Grant 2019-00094]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0261 .
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.