3-[5-(1H-吲哚-3-基亚甲基)-4-氧代-2-硫代噻唑烷-3-基]-丙酸作为潜在的多药生态制剂

IF 2.3 Q3 PHARMACOLOGY & PHARMACY Scientia Pharmaceutica Pub Date : 2023-03-02 DOI:10.3390/scipharm91010013
Y. Konechnyi, A. Lozynskyi, I. Ivasechko, T. Dumych, S. Paryzhak, O. Hrushka, Ulyana Partyka, Iryna Pasichnyuk, D. Khylyuk, R. Lesyk
{"title":"3-[5-(1H-吲哚-3-基亚甲基)-4-氧代-2-硫代噻唑烷-3-基]-丙酸作为潜在的多药生态制剂","authors":"Y. Konechnyi, A. Lozynskyi, I. Ivasechko, T. Dumych, S. Paryzhak, O. Hrushka, Ulyana Partyka, Iryna Pasichnyuk, D. Khylyuk, R. Lesyk","doi":"10.3390/scipharm91010013","DOIUrl":null,"url":null,"abstract":"Searching for new types of biological activities among preliminarily identified hit compounds is a key challenge in modern medicinal chemistry. In our study, a previously studied 3-[5-(1H-indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-propionic acid (Les-6614) was screened for antimicrobial, antifungal, anti-allergic, and antitumor activities. Moreover, cytotoxicity, molecular docking, and SwissAdme online target screening were accomplished. It was determined that the Les-6614 has slight antimicrobial and antitumor activity. However, the studied compound decreased IgE levels in sensitized guinea pigs by 33–86% and reduced IgA, IgM, IL-2, and TNF-α, indicating anti-inflammatory and anti-allergic aactivities. According to the SwissADME web tool, target predictions for Les-6614 potentially have an affinity for lysosomal protective protein, Thromboxane-A synthase, and PPARγ. The molecular docking confirmed that the studied 2-thioxo-4-thiazolidinone derivative showed good bonding with LLP and TXAS, leading to stable protein–ligand complexes. Additionally, Les-6614 is a potential PPARγ modulator, which is important in the pathogenesis of allergy, cancer, and cardiovascular diseases.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-propionic Acid as a Potential Polypharmacological Agent\",\"authors\":\"Y. Konechnyi, A. Lozynskyi, I. Ivasechko, T. Dumych, S. Paryzhak, O. Hrushka, Ulyana Partyka, Iryna Pasichnyuk, D. Khylyuk, R. Lesyk\",\"doi\":\"10.3390/scipharm91010013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Searching for new types of biological activities among preliminarily identified hit compounds is a key challenge in modern medicinal chemistry. In our study, a previously studied 3-[5-(1H-indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-propionic acid (Les-6614) was screened for antimicrobial, antifungal, anti-allergic, and antitumor activities. Moreover, cytotoxicity, molecular docking, and SwissAdme online target screening were accomplished. It was determined that the Les-6614 has slight antimicrobial and antitumor activity. However, the studied compound decreased IgE levels in sensitized guinea pigs by 33–86% and reduced IgA, IgM, IL-2, and TNF-α, indicating anti-inflammatory and anti-allergic aactivities. According to the SwissADME web tool, target predictions for Les-6614 potentially have an affinity for lysosomal protective protein, Thromboxane-A synthase, and PPARγ. The molecular docking confirmed that the studied 2-thioxo-4-thiazolidinone derivative showed good bonding with LLP and TXAS, leading to stable protein–ligand complexes. Additionally, Les-6614 is a potential PPARγ modulator, which is important in the pathogenesis of allergy, cancer, and cardiovascular diseases.\",\"PeriodicalId\":21601,\"journal\":{\"name\":\"Scientia Pharmaceutica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Pharmaceutica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/scipharm91010013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Pharmaceutica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/scipharm91010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 2

摘要

在初步鉴定的命中化合物中寻找新的生物活性类型是现代药物化学的关键挑战。在我们的研究中,筛选了先前研究的3-[5-(1h -吲哚-3-基亚甲基)-4-氧-2-硫氧噻唑烷-3-基]-丙酸(Les-6614)的抗菌、抗真菌、抗过敏和抗肿瘤活性。完成细胞毒性、分子对接和SwissAdme在线靶点筛选。结果表明,Les-6614具有轻微的抗菌和抗肿瘤活性。然而,所研究的化合物使致敏豚鼠的IgE水平降低了33-86%,并降低了IgA、IgM、IL-2和TNF-α,表明其具有抗炎和抗过敏活性。根据SwissADME网络工具,Les-6614的靶标预测可能与溶酶体保护蛋白、血栓素a合成酶和PPARγ有亲和力。分子对接证实了所研究的2-硫氧-4-噻唑烷酮衍生物与LLP和TXAS具有良好的结合,形成稳定的蛋白质-配体复合物。此外,Les-6614是一种潜在的PPARγ调节剂,在过敏、癌症和心血管疾病的发病机制中起重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-propionic Acid as a Potential Polypharmacological Agent
Searching for new types of biological activities among preliminarily identified hit compounds is a key challenge in modern medicinal chemistry. In our study, a previously studied 3-[5-(1H-indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-propionic acid (Les-6614) was screened for antimicrobial, antifungal, anti-allergic, and antitumor activities. Moreover, cytotoxicity, molecular docking, and SwissAdme online target screening were accomplished. It was determined that the Les-6614 has slight antimicrobial and antitumor activity. However, the studied compound decreased IgE levels in sensitized guinea pigs by 33–86% and reduced IgA, IgM, IL-2, and TNF-α, indicating anti-inflammatory and anti-allergic aactivities. According to the SwissADME web tool, target predictions for Les-6614 potentially have an affinity for lysosomal protective protein, Thromboxane-A synthase, and PPARγ. The molecular docking confirmed that the studied 2-thioxo-4-thiazolidinone derivative showed good bonding with LLP and TXAS, leading to stable protein–ligand complexes. Additionally, Les-6614 is a potential PPARγ modulator, which is important in the pathogenesis of allergy, cancer, and cardiovascular diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientia Pharmaceutica
Scientia Pharmaceutica Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.60
自引率
4.00%
发文量
67
审稿时长
10 weeks
期刊最新文献
The Extraction of Bioactive Agents from Calophyllum inophyllum L., and Their Pharmacological Properties The Risks of “Getting High” on Over-the-Counter Drugs during Pregnancy Diastereomers of Spheroidal Form and Commercially Available Taxifolin Samples Inhibitory Effect of Mistletoe Ointment on DNCB-Induced Atopic Dermatitis in BALB/c Mice Assessing the Influence of a Rotating Magnetic Field on Ibuprofen Permeability from Diverse Pharmaceutical Formulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1