Muhammad Fauzan Alif Radjawali, M. Jihadah, L. Chaidir
{"title":"RT-qPCR合并法在不同周期阈值下检测新冠肺炎的可靠性","authors":"Muhammad Fauzan Alif Radjawali, M. Jihadah, L. Chaidir","doi":"10.15850/amj.v10n2.2940","DOIUrl":null,"url":null,"abstract":"Background: Reverse Transcriptase Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) is a standard method to detect SARS-CoV-2, the cause of COVID-19 disease, albeit expensive for some laboratory settings. The pooling test is widely used for large-scale screening to speed up the turn-around time and reduce the cost of the RT-qPCR. However, the pooling test involves mixing a certain number of specimens which theoretically increases the possibility of false-negative results. This study aimed to evaluate the accuracy of the pooling test compared with the non-pooling test in different Ct values as a surrogate for viral load.Methods: RT-qPCR was performed in three groups of samples: non-pooling (individual samples), pooling of 5 samples and 11 samples, with various ranges of Ct value in the respective group: x<25 (n=4); 25<x<30 (n=5), x<30 (n=16), and negative sample (n=5). Agreement and kappa values were calculated. Four of twenty-five individual samples resulted in false-negative after pooling.Results: By taking all samples without applying the cut-off value to the calculation, the agreement in pooling of 5 samples was 0.86 (Kappa 0.31) and of 11 samples was 0.64 (Kappa 0.96). When the cut-off value of Ct<37 was applied, percent agreement and kappa were 1.00, respectively, for both pooling methods.Conclusions: Pooling up to 11 samples shows high concordance with RT-qPCR with individual samples with Ct<37. Interpreting pooling results in a very low viral load (Ct≥37) must be considered due to the increased possibility of inconclusive results.","PeriodicalId":31310,"journal":{"name":"Althea Medical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability of RT-qPCR Pooling Method for COVID-19 Detection in Various Cycle Threshold Values\",\"authors\":\"Muhammad Fauzan Alif Radjawali, M. Jihadah, L. Chaidir\",\"doi\":\"10.15850/amj.v10n2.2940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Reverse Transcriptase Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) is a standard method to detect SARS-CoV-2, the cause of COVID-19 disease, albeit expensive for some laboratory settings. The pooling test is widely used for large-scale screening to speed up the turn-around time and reduce the cost of the RT-qPCR. However, the pooling test involves mixing a certain number of specimens which theoretically increases the possibility of false-negative results. This study aimed to evaluate the accuracy of the pooling test compared with the non-pooling test in different Ct values as a surrogate for viral load.Methods: RT-qPCR was performed in three groups of samples: non-pooling (individual samples), pooling of 5 samples and 11 samples, with various ranges of Ct value in the respective group: x<25 (n=4); 25<x<30 (n=5), x<30 (n=16), and negative sample (n=5). Agreement and kappa values were calculated. Four of twenty-five individual samples resulted in false-negative after pooling.Results: By taking all samples without applying the cut-off value to the calculation, the agreement in pooling of 5 samples was 0.86 (Kappa 0.31) and of 11 samples was 0.64 (Kappa 0.96). When the cut-off value of Ct<37 was applied, percent agreement and kappa were 1.00, respectively, for both pooling methods.Conclusions: Pooling up to 11 samples shows high concordance with RT-qPCR with individual samples with Ct<37. Interpreting pooling results in a very low viral load (Ct≥37) must be considered due to the increased possibility of inconclusive results.\",\"PeriodicalId\":31310,\"journal\":{\"name\":\"Althea Medical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Althea Medical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15850/amj.v10n2.2940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Althea Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15850/amj.v10n2.2940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliability of RT-qPCR Pooling Method for COVID-19 Detection in Various Cycle Threshold Values
Background: Reverse Transcriptase Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) is a standard method to detect SARS-CoV-2, the cause of COVID-19 disease, albeit expensive for some laboratory settings. The pooling test is widely used for large-scale screening to speed up the turn-around time and reduce the cost of the RT-qPCR. However, the pooling test involves mixing a certain number of specimens which theoretically increases the possibility of false-negative results. This study aimed to evaluate the accuracy of the pooling test compared with the non-pooling test in different Ct values as a surrogate for viral load.Methods: RT-qPCR was performed in three groups of samples: non-pooling (individual samples), pooling of 5 samples and 11 samples, with various ranges of Ct value in the respective group: x<25 (n=4); 25