ANN在预测UNS S32750激光焊接接头的深宽比和抗拉强度中的应用

Q4 Materials Science Welding International Pub Date : 2023-02-01 DOI:10.1080/09507116.2023.2191805
S. Saravanan, K. Kumararaja
{"title":"ANN在预测UNS S32750激光焊接接头的深宽比和抗拉强度中的应用","authors":"S. Saravanan, K. Kumararaja","doi":"10.1080/09507116.2023.2191805","DOIUrl":null,"url":null,"abstract":"Abstract The effectiveness of the pulsed mode laser weld joint is characterized by the supply of optical energy to the interface. The laser welding process parameters, such as laser power, pulse duration, travel speed and focus, determine the efficacy of the weld, which is defined by full penetration and free of pores and defects. However, expressing the relationship between various process parameters and mechanical strength is intricate due to the prevalence of non-linear relationship. The development of computational approaches aids in optimizing the laser welding parameters and reducing trial and error. Hence, the artificial neural network (ANN) model is developed, in a python environment, to predict the optimum process parameter values for a desirable depth to width ratio and maximum tensile strength of UNS S32750 laser butt weld joints. The developed model was assessed by experiments, not utilized for training. The ANN model predicts the depth to width ratio and tensile strength of the weld joints with an accuracy of 90% and less than 10% divergence from the experimental result. Furthermore, for the process, parametric conditions are: (power: 550 W, focus: –1 mm, pulse duration: 13 Hz and travel speed: 136 mm/min) to attain maximum tensile strength.","PeriodicalId":23605,"journal":{"name":"Welding International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of ANN in predicting the depth to width ratio and tensile strength of UNS S32750 laser weld joints\",\"authors\":\"S. Saravanan, K. Kumararaja\",\"doi\":\"10.1080/09507116.2023.2191805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The effectiveness of the pulsed mode laser weld joint is characterized by the supply of optical energy to the interface. The laser welding process parameters, such as laser power, pulse duration, travel speed and focus, determine the efficacy of the weld, which is defined by full penetration and free of pores and defects. However, expressing the relationship between various process parameters and mechanical strength is intricate due to the prevalence of non-linear relationship. The development of computational approaches aids in optimizing the laser welding parameters and reducing trial and error. Hence, the artificial neural network (ANN) model is developed, in a python environment, to predict the optimum process parameter values for a desirable depth to width ratio and maximum tensile strength of UNS S32750 laser butt weld joints. The developed model was assessed by experiments, not utilized for training. The ANN model predicts the depth to width ratio and tensile strength of the weld joints with an accuracy of 90% and less than 10% divergence from the experimental result. Furthermore, for the process, parametric conditions are: (power: 550 W, focus: –1 mm, pulse duration: 13 Hz and travel speed: 136 mm/min) to attain maximum tensile strength.\",\"PeriodicalId\":23605,\"journal\":{\"name\":\"Welding International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09507116.2023.2191805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09507116.2023.2191805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

摘要脉冲模式激光焊接接头的有效性主要表现在向界面提供光能。激光焊接工艺参数,如激光功率、脉冲持续时间、行进速度和焦点,决定了焊缝的有效性,其定义是焊缝充分渗透和无气孔和缺陷。然而,由于各种工艺参数与机械强度之间的关系普遍存在非线性关系,因此表达它们之间的关系是复杂的。计算方法的发展有助于优化激光焊接参数,减少试验和错误。因此,在python环境中开发了人工神经网络(ANN)模型,以预测UNS S32750激光对接焊缝所需的深度与宽度比和最大抗拉强度的最佳工艺参数值。所建立的模型通过实验进行评估,未用于训练。人工神经网络模型预测焊缝的深宽比和抗拉强度的精度为90%,与实验结果的偏差小于10%。此外,对于该工艺,参数条件为:(功率:550 W,焦点:-1 mm,脉冲持续时间:13 Hz,行进速度:136 mm/min)以获得最大抗拉强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of ANN in predicting the depth to width ratio and tensile strength of UNS S32750 laser weld joints
Abstract The effectiveness of the pulsed mode laser weld joint is characterized by the supply of optical energy to the interface. The laser welding process parameters, such as laser power, pulse duration, travel speed and focus, determine the efficacy of the weld, which is defined by full penetration and free of pores and defects. However, expressing the relationship between various process parameters and mechanical strength is intricate due to the prevalence of non-linear relationship. The development of computational approaches aids in optimizing the laser welding parameters and reducing trial and error. Hence, the artificial neural network (ANN) model is developed, in a python environment, to predict the optimum process parameter values for a desirable depth to width ratio and maximum tensile strength of UNS S32750 laser butt weld joints. The developed model was assessed by experiments, not utilized for training. The ANN model predicts the depth to width ratio and tensile strength of the weld joints with an accuracy of 90% and less than 10% divergence from the experimental result. Furthermore, for the process, parametric conditions are: (power: 550 W, focus: –1 mm, pulse duration: 13 Hz and travel speed: 136 mm/min) to attain maximum tensile strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding International
Welding International Materials Science-Metals and Alloys
CiteScore
0.70
自引率
0.00%
发文量
57
期刊介绍: Welding International provides comprehensive English translations of complete articles, selected from major international welding journals, including: Journal of Japan Welding Society - Japan Journal of Light Metal Welding and Construction - Japan Przeglad Spawalnictwa - Poland Quarterly Journal of Japan Welding Society - Japan Revista de Metalurgia - Spain Rivista Italiana della Saldatura - Italy Soldagem & Inspeção - Brazil Svarochnoe Proizvodstvo - Russia Welding International is a well-established and widely respected journal and the translators are carefully chosen with each issue containing a balanced selection of between 15 and 20 articles. The articles cover research techniques, equipment and process developments, applications and material and are not available elsewhere in English. This journal provides a valuable and unique service for those needing to keep up-to-date on the latest developments in welding technology in non-English speaking countries.
期刊最新文献
Characteristics analysis and monitoring of friction stir welded dissimilar AA5083/AA6061-T6 using acoustic emission technique Edge detection in x-ray images of drill mast welds based on an improved Scharr operator Experimentally validated numerical prediction of laser welding induced distortions of Al alloy parts for railcar body by inherent strain method combined with thermo-elastic-plastic FE model Understanding of thermal behaviour in keyhole plasma arc welding process through numerical modelling–an overview Effect of post-weld heat treatment on mechanical and microstructural properties of high strength steel weld metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1