Quanlong Yang, Dongyang Wang, S. Kruk, Mingkai Liu, I. Kravchenko, Jiaguang Han, Y. Kivshar, I. Shadrivov
{"title":"用于太赫兹光子学的拓扑授权膜器件","authors":"Quanlong Yang, Dongyang Wang, S. Kruk, Mingkai Liu, I. Kravchenko, Jiaguang Han, Y. Kivshar, I. Shadrivov","doi":"10.1117/1.AP.4.4.046002","DOIUrl":null,"url":null,"abstract":"Abstract. Control of terahertz waves offers a profound platform for next-generation sensing, imaging, and information communications. However, all conventional terahertz components and systems suffer from bulky design, sensitivity to imperfections, and transmission loss. We propose and experimentally demonstrate on-chip integration and miniaturization of topological devices, which may address many existing drawbacks of the terahertz technology. We design and fabricate topological devices based on valley-Hall photonic structures that can be employed for various integrated components of on-chip terahertz systems. We demonstrate valley-locked asymmetric energy flow and mode conversion with topological waveguide, multiport couplers, wave division, and whispering gallery mode resonators. Our devices are based on topological membrane metasurfaces, which are of great importance for developing on-chip photonics and bring many features into terahertz technology.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"4 1","pages":"046002 - 046002"},"PeriodicalIF":20.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Topology-empowered membrane devices for terahertz photonics\",\"authors\":\"Quanlong Yang, Dongyang Wang, S. Kruk, Mingkai Liu, I. Kravchenko, Jiaguang Han, Y. Kivshar, I. Shadrivov\",\"doi\":\"10.1117/1.AP.4.4.046002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Control of terahertz waves offers a profound platform for next-generation sensing, imaging, and information communications. However, all conventional terahertz components and systems suffer from bulky design, sensitivity to imperfections, and transmission loss. We propose and experimentally demonstrate on-chip integration and miniaturization of topological devices, which may address many existing drawbacks of the terahertz technology. We design and fabricate topological devices based on valley-Hall photonic structures that can be employed for various integrated components of on-chip terahertz systems. We demonstrate valley-locked asymmetric energy flow and mode conversion with topological waveguide, multiport couplers, wave division, and whispering gallery mode resonators. Our devices are based on topological membrane metasurfaces, which are of great importance for developing on-chip photonics and bring many features into terahertz technology.\",\"PeriodicalId\":33241,\"journal\":{\"name\":\"Advanced Photonics\",\"volume\":\"4 1\",\"pages\":\"046002 - 046002\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.AP.4.4.046002\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.4.4.046002","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Topology-empowered membrane devices for terahertz photonics
Abstract. Control of terahertz waves offers a profound platform for next-generation sensing, imaging, and information communications. However, all conventional terahertz components and systems suffer from bulky design, sensitivity to imperfections, and transmission loss. We propose and experimentally demonstrate on-chip integration and miniaturization of topological devices, which may address many existing drawbacks of the terahertz technology. We design and fabricate topological devices based on valley-Hall photonic structures that can be employed for various integrated components of on-chip terahertz systems. We demonstrate valley-locked asymmetric energy flow and mode conversion with topological waveguide, multiport couplers, wave division, and whispering gallery mode resonators. Our devices are based on topological membrane metasurfaces, which are of great importance for developing on-chip photonics and bring many features into terahertz technology.
期刊介绍:
Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential.
The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria:
-New concepts in terms of fundamental research with great impact and significance
-State-of-the-art technologies in terms of novel methods for important applications
-Reviews of recent major advances and discoveries and state-of-the-art benchmarking.
The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.