Gang Nam Lee , Kwang Hyo Jung , Hyung Jun Kim , Bong Ju Kim , Dae Kyeom Park , Il-Ryong Park
{"title":"海上结构用平板和穿孔辐射隔热板性能的数值研究","authors":"Gang Nam Lee , Kwang Hyo Jung , Hyung Jun Kim , Bong Ju Kim , Dae Kyeom Park , Il-Ryong Park","doi":"10.1016/j.ijnaoe.2022.100491","DOIUrl":null,"url":null,"abstract":"<div><p>Heat shields are an essential safety facility on offshore structures to protect the workers and the equipment on deck from the violent radiant heat flux and the high temperatures of the flare tower. In this study, a series of Computational Fluid Dynamics (CFD) simulations were performed to investigate the thermal characteristics of radiant heat shields on offshore structures in order to obtain a precise prediction of those reduction performances on heat flux and temperature. CFD methodologies for the radiant heat transfer simulation were suggested for grid, iteration, and time step with physical modelling methods of heat transfer considering the convection effect and the heat flux sensor, including the scaling method for the simulation of a perforated heat shield. The reduction ratios of the heat flux and temperature were obtained for the case without the heat shield and for a flat and perforated heat shield under the heat source of 25 kW/m<sup>2</sup> for various distances from the heat shield, and the results were compared with the experimental results. Analytical estimation methods were included in the study of the radiant heat flux and temperature, and an empirical formula was provided for the performance of the heat shields based on the CFD results.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of performance of flat and perforated radiant heat shields for offshore structures\",\"authors\":\"Gang Nam Lee , Kwang Hyo Jung , Hyung Jun Kim , Bong Ju Kim , Dae Kyeom Park , Il-Ryong Park\",\"doi\":\"10.1016/j.ijnaoe.2022.100491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Heat shields are an essential safety facility on offshore structures to protect the workers and the equipment on deck from the violent radiant heat flux and the high temperatures of the flare tower. In this study, a series of Computational Fluid Dynamics (CFD) simulations were performed to investigate the thermal characteristics of radiant heat shields on offshore structures in order to obtain a precise prediction of those reduction performances on heat flux and temperature. CFD methodologies for the radiant heat transfer simulation were suggested for grid, iteration, and time step with physical modelling methods of heat transfer considering the convection effect and the heat flux sensor, including the scaling method for the simulation of a perforated heat shield. The reduction ratios of the heat flux and temperature were obtained for the case without the heat shield and for a flat and perforated heat shield under the heat source of 25 kW/m<sup>2</sup> for various distances from the heat shield, and the results were compared with the experimental results. Analytical estimation methods were included in the study of the radiant heat flux and temperature, and an empirical formula was provided for the performance of the heat shields based on the CFD results.</p></div>\",\"PeriodicalId\":14160,\"journal\":{\"name\":\"International Journal of Naval Architecture and Ocean Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Naval Architecture and Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2092678222000577\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678222000577","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Numerical study of performance of flat and perforated radiant heat shields for offshore structures
Heat shields are an essential safety facility on offshore structures to protect the workers and the equipment on deck from the violent radiant heat flux and the high temperatures of the flare tower. In this study, a series of Computational Fluid Dynamics (CFD) simulations were performed to investigate the thermal characteristics of radiant heat shields on offshore structures in order to obtain a precise prediction of those reduction performances on heat flux and temperature. CFD methodologies for the radiant heat transfer simulation were suggested for grid, iteration, and time step with physical modelling methods of heat transfer considering the convection effect and the heat flux sensor, including the scaling method for the simulation of a perforated heat shield. The reduction ratios of the heat flux and temperature were obtained for the case without the heat shield and for a flat and perforated heat shield under the heat source of 25 kW/m2 for various distances from the heat shield, and the results were compared with the experimental results. Analytical estimation methods were included in the study of the radiant heat flux and temperature, and an empirical formula was provided for the performance of the heat shields based on the CFD results.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.