{"title":"受生物受体启发的软传感器阵列:推进数字医疗的最新进展","authors":"F. Arab Hassani","doi":"10.20517/ss.2023.23","DOIUrl":null,"url":null,"abstract":"Recent advances in soft sensor technology have pushed digital healthcare toward life-changing solutions. Data reliability and robustness can be realised by building sensor arrays that collect comprehensive biological parameter data from several points on the underlying organs simultaneously, a principle that is inspired by bioreceptors. The rapid growth of soft lithography and printing, three-dimensional (3D) printing, and weaving/knitting technologies has facilitated the low-cost development of soft sensors in the array format. Advances in data acquisition, processing, and visualisation techniques have helped with the collection of meaningful data using arrays and their presentation to users on personal devices through wireless communication interfaces. Local- or cloud-based data storage helps with the collection of adequate data from sensor arrays over time to facilitate reliable prognoses based on historical data. Emerging energy harvesting technologies have led to the development of techniques to power sensor arrays sustainably. This review presents developmental building blocks in wearable and artificial organ-based soft sensor arrays, including bioreceptor-inspired sensing mechanisms, fabrication methods, digital data-acquisition techniques, methods to present the results to users, power systems, and target diseases/conditions for treatment or monitoring. Finally, we summarise the challenges associated with the development of single and multimodal array sensors for advanced digital healthcare and suggest possible solutions to overcome them.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioreceptor-inspired soft sensor arrays: recent progress towards advancing digital healthcare\",\"authors\":\"F. Arab Hassani\",\"doi\":\"10.20517/ss.2023.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in soft sensor technology have pushed digital healthcare toward life-changing solutions. Data reliability and robustness can be realised by building sensor arrays that collect comprehensive biological parameter data from several points on the underlying organs simultaneously, a principle that is inspired by bioreceptors. The rapid growth of soft lithography and printing, three-dimensional (3D) printing, and weaving/knitting technologies has facilitated the low-cost development of soft sensors in the array format. Advances in data acquisition, processing, and visualisation techniques have helped with the collection of meaningful data using arrays and their presentation to users on personal devices through wireless communication interfaces. Local- or cloud-based data storage helps with the collection of adequate data from sensor arrays over time to facilitate reliable prognoses based on historical data. Emerging energy harvesting technologies have led to the development of techniques to power sensor arrays sustainably. This review presents developmental building blocks in wearable and artificial organ-based soft sensor arrays, including bioreceptor-inspired sensing mechanisms, fabrication methods, digital data-acquisition techniques, methods to present the results to users, power systems, and target diseases/conditions for treatment or monitoring. Finally, we summarise the challenges associated with the development of single and multimodal array sensors for advanced digital healthcare and suggest possible solutions to overcome them.\",\"PeriodicalId\":74837,\"journal\":{\"name\":\"Soft science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ss.2023.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2023.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bioreceptor-inspired soft sensor arrays: recent progress towards advancing digital healthcare
Recent advances in soft sensor technology have pushed digital healthcare toward life-changing solutions. Data reliability and robustness can be realised by building sensor arrays that collect comprehensive biological parameter data from several points on the underlying organs simultaneously, a principle that is inspired by bioreceptors. The rapid growth of soft lithography and printing, three-dimensional (3D) printing, and weaving/knitting technologies has facilitated the low-cost development of soft sensors in the array format. Advances in data acquisition, processing, and visualisation techniques have helped with the collection of meaningful data using arrays and their presentation to users on personal devices through wireless communication interfaces. Local- or cloud-based data storage helps with the collection of adequate data from sensor arrays over time to facilitate reliable prognoses based on historical data. Emerging energy harvesting technologies have led to the development of techniques to power sensor arrays sustainably. This review presents developmental building blocks in wearable and artificial organ-based soft sensor arrays, including bioreceptor-inspired sensing mechanisms, fabrication methods, digital data-acquisition techniques, methods to present the results to users, power systems, and target diseases/conditions for treatment or monitoring. Finally, we summarise the challenges associated with the development of single and multimodal array sensors for advanced digital healthcare and suggest possible solutions to overcome them.