交响乐计划:初级本科院校的生物物理学研究经历

M. Muzzio, Sue Ellen Evangelista, Jacqueline Denver, Maria Lopez, Sunghee Lee
{"title":"交响乐计划:初级本科院校的生物物理学研究经历","authors":"M. Muzzio, Sue Ellen Evangelista, Jacqueline Denver, Maria Lopez, Sunghee Lee","doi":"10.35459/TBP.2019.000135","DOIUrl":null,"url":null,"abstract":"Increased attention has been conferred upon interdisciplinary science, technology, engineering, and math (STEM) education to prepare students for deeper understanding to address complex challenges (1–3). Particularly at the undergraduate level, there is recognized value in providing opportunities for students to integrate knowledge across disciplinary boundaries (4–7). In addition to core technical knowledge, it is beneficial to confer behavioral skills that allow students to perform well with others through effective communication, time management, and teamwork (8). Undergraduate research experiences have been considered to be a powerful learning tool, engaging students and stimulating their enthusiasm, thereby improving academic performance and persistence in science and preparing students for advanced degrees and careers in STEM fields (9–17). This report, the culmination of more than a decade’s work with undergraduate students, presents practices demonstrating that early exposure to the interdisciplinary field of biophysics can be effectively introduced at a primarily undergraduate institution (PUI) level through a well-structured research plan involving undergraduates with different STEM majors. The management of this group, called ‘‘Project Symphony’’ (18), overcame the challenges of sustaining research activities at a PUI via the incorporation of 2 essential elements of success: (a) establishment of a cooperative learning variant whereby students work together to maximize individual learning and each other’s learning; and (b) promotion of an integrated understanding via interdisciplinary biophysics projects.","PeriodicalId":72403,"journal":{"name":"Biophysicist (Rockville, Md.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Project Symphony: A Biophysics Research Experience at a Primarily Undergraduate Institution\",\"authors\":\"M. Muzzio, Sue Ellen Evangelista, Jacqueline Denver, Maria Lopez, Sunghee Lee\",\"doi\":\"10.35459/TBP.2019.000135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased attention has been conferred upon interdisciplinary science, technology, engineering, and math (STEM) education to prepare students for deeper understanding to address complex challenges (1–3). Particularly at the undergraduate level, there is recognized value in providing opportunities for students to integrate knowledge across disciplinary boundaries (4–7). In addition to core technical knowledge, it is beneficial to confer behavioral skills that allow students to perform well with others through effective communication, time management, and teamwork (8). Undergraduate research experiences have been considered to be a powerful learning tool, engaging students and stimulating their enthusiasm, thereby improving academic performance and persistence in science and preparing students for advanced degrees and careers in STEM fields (9–17). This report, the culmination of more than a decade’s work with undergraduate students, presents practices demonstrating that early exposure to the interdisciplinary field of biophysics can be effectively introduced at a primarily undergraduate institution (PUI) level through a well-structured research plan involving undergraduates with different STEM majors. The management of this group, called ‘‘Project Symphony’’ (18), overcame the challenges of sustaining research activities at a PUI via the incorporation of 2 essential elements of success: (a) establishment of a cooperative learning variant whereby students work together to maximize individual learning and each other’s learning; and (b) promotion of an integrated understanding via interdisciplinary biophysics projects.\",\"PeriodicalId\":72403,\"journal\":{\"name\":\"Biophysicist (Rockville, Md.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysicist (Rockville, Md.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35459/TBP.2019.000135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysicist (Rockville, Md.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35459/TBP.2019.000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

跨学科科学、技术、工程和数学(STEM)教育得到了越来越多的关注,为学生更好地理解应对复杂挑战做好了准备(1-3)。特别是在本科阶段,为学生提供跨学科整合知识的机会具有公认的价值(4-7)。除了核心技术知识外,传授行为技能也是有益的,这些技能使学生能够通过有效的沟通、时间管理和团队合作与他人良好相处(8)。本科生研究经验被认为是一种强大的学习工具,可以吸引学生并激发他们的热情,从而提高学习成绩和对科学的坚持,并为学生获得STEM领域的高级学位和职业生涯做好准备(9-17)。这份报告是十多年来与本科生合作的成果,它提出了一些实践,证明通过一个结构良好的研究计划,让不同STEM专业的本科生参与进来,可以在主要的本科生机构(PUI)层面有效地早期接触生物物理跨学科领域。这个名为“交响乐项目”(18)的小组的管理层通过结合两个成功的基本要素,克服了在PUI维持研究活动的挑战:(a)建立合作学习变体,让学生共同努力,最大限度地提高个人学习和彼此学习;(b)通过跨学科生物物理项目促进综合理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Project Symphony: A Biophysics Research Experience at a Primarily Undergraduate Institution
Increased attention has been conferred upon interdisciplinary science, technology, engineering, and math (STEM) education to prepare students for deeper understanding to address complex challenges (1–3). Particularly at the undergraduate level, there is recognized value in providing opportunities for students to integrate knowledge across disciplinary boundaries (4–7). In addition to core technical knowledge, it is beneficial to confer behavioral skills that allow students to perform well with others through effective communication, time management, and teamwork (8). Undergraduate research experiences have been considered to be a powerful learning tool, engaging students and stimulating their enthusiasm, thereby improving academic performance and persistence in science and preparing students for advanced degrees and careers in STEM fields (9–17). This report, the culmination of more than a decade’s work with undergraduate students, presents practices demonstrating that early exposure to the interdisciplinary field of biophysics can be effectively introduced at a primarily undergraduate institution (PUI) level through a well-structured research plan involving undergraduates with different STEM majors. The management of this group, called ‘‘Project Symphony’’ (18), overcame the challenges of sustaining research activities at a PUI via the incorporation of 2 essential elements of success: (a) establishment of a cooperative learning variant whereby students work together to maximize individual learning and each other’s learning; and (b) promotion of an integrated understanding via interdisciplinary biophysics projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teaching Image Processing and Optical Engineering to University Biology Students Implementation of Specifications Grading in an Upper-Division Chemical Biology Lecture Course Undergraduate Tutorial for Simulating Flocking with the Vicsek Model Bringing Biophysics Outreach to a Rural County Fair Modular, Articulated Models of DNA and Peptide Nucleic Acids for Nanotechnology Education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1