M. Muzzio, Sue Ellen Evangelista, Jacqueline Denver, Maria Lopez, Sunghee Lee
{"title":"交响乐计划:初级本科院校的生物物理学研究经历","authors":"M. Muzzio, Sue Ellen Evangelista, Jacqueline Denver, Maria Lopez, Sunghee Lee","doi":"10.35459/TBP.2019.000135","DOIUrl":null,"url":null,"abstract":"Increased attention has been conferred upon interdisciplinary science, technology, engineering, and math (STEM) education to prepare students for deeper understanding to address complex challenges (1–3). Particularly at the undergraduate level, there is recognized value in providing opportunities for students to integrate knowledge across disciplinary boundaries (4–7). In addition to core technical knowledge, it is beneficial to confer behavioral skills that allow students to perform well with others through effective communication, time management, and teamwork (8). Undergraduate research experiences have been considered to be a powerful learning tool, engaging students and stimulating their enthusiasm, thereby improving academic performance and persistence in science and preparing students for advanced degrees and careers in STEM fields (9–17). This report, the culmination of more than a decade’s work with undergraduate students, presents practices demonstrating that early exposure to the interdisciplinary field of biophysics can be effectively introduced at a primarily undergraduate institution (PUI) level through a well-structured research plan involving undergraduates with different STEM majors. The management of this group, called ‘‘Project Symphony’’ (18), overcame the challenges of sustaining research activities at a PUI via the incorporation of 2 essential elements of success: (a) establishment of a cooperative learning variant whereby students work together to maximize individual learning and each other’s learning; and (b) promotion of an integrated understanding via interdisciplinary biophysics projects.","PeriodicalId":72403,"journal":{"name":"Biophysicist (Rockville, Md.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Project Symphony: A Biophysics Research Experience at a Primarily Undergraduate Institution\",\"authors\":\"M. Muzzio, Sue Ellen Evangelista, Jacqueline Denver, Maria Lopez, Sunghee Lee\",\"doi\":\"10.35459/TBP.2019.000135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased attention has been conferred upon interdisciplinary science, technology, engineering, and math (STEM) education to prepare students for deeper understanding to address complex challenges (1–3). Particularly at the undergraduate level, there is recognized value in providing opportunities for students to integrate knowledge across disciplinary boundaries (4–7). In addition to core technical knowledge, it is beneficial to confer behavioral skills that allow students to perform well with others through effective communication, time management, and teamwork (8). Undergraduate research experiences have been considered to be a powerful learning tool, engaging students and stimulating their enthusiasm, thereby improving academic performance and persistence in science and preparing students for advanced degrees and careers in STEM fields (9–17). This report, the culmination of more than a decade’s work with undergraduate students, presents practices demonstrating that early exposure to the interdisciplinary field of biophysics can be effectively introduced at a primarily undergraduate institution (PUI) level through a well-structured research plan involving undergraduates with different STEM majors. The management of this group, called ‘‘Project Symphony’’ (18), overcame the challenges of sustaining research activities at a PUI via the incorporation of 2 essential elements of success: (a) establishment of a cooperative learning variant whereby students work together to maximize individual learning and each other’s learning; and (b) promotion of an integrated understanding via interdisciplinary biophysics projects.\",\"PeriodicalId\":72403,\"journal\":{\"name\":\"Biophysicist (Rockville, Md.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysicist (Rockville, Md.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35459/TBP.2019.000135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysicist (Rockville, Md.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35459/TBP.2019.000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Project Symphony: A Biophysics Research Experience at a Primarily Undergraduate Institution
Increased attention has been conferred upon interdisciplinary science, technology, engineering, and math (STEM) education to prepare students for deeper understanding to address complex challenges (1–3). Particularly at the undergraduate level, there is recognized value in providing opportunities for students to integrate knowledge across disciplinary boundaries (4–7). In addition to core technical knowledge, it is beneficial to confer behavioral skills that allow students to perform well with others through effective communication, time management, and teamwork (8). Undergraduate research experiences have been considered to be a powerful learning tool, engaging students and stimulating their enthusiasm, thereby improving academic performance and persistence in science and preparing students for advanced degrees and careers in STEM fields (9–17). This report, the culmination of more than a decade’s work with undergraduate students, presents practices demonstrating that early exposure to the interdisciplinary field of biophysics can be effectively introduced at a primarily undergraduate institution (PUI) level through a well-structured research plan involving undergraduates with different STEM majors. The management of this group, called ‘‘Project Symphony’’ (18), overcame the challenges of sustaining research activities at a PUI via the incorporation of 2 essential elements of success: (a) establishment of a cooperative learning variant whereby students work together to maximize individual learning and each other’s learning; and (b) promotion of an integrated understanding via interdisciplinary biophysics projects.