P. Zhou, Xiaoqin Peng, Haipei Zhu, Xueyu Ren, P. Lin, Kaichuang Wang, Haonan Li, Zhonghui Zhou, Jia-wang Chen, Jun Li, Xuehua Chen, Guomin Cao, Xuyun Gao
{"title":"海底管道变形缺陷三维精确测绘系统研究","authors":"P. Zhou, Xiaoqin Peng, Haipei Zhu, Xueyu Ren, P. Lin, Kaichuang Wang, Haonan Li, Zhonghui Zhou, Jia-wang Chen, Jun Li, Xuehua Chen, Guomin Cao, Xuyun Gao","doi":"10.4031/mtsj.57.1.6","DOIUrl":null,"url":null,"abstract":"Abstract The submarine oil pipeline has many advantages, such as large oil transportation capacity, and being fast and economical. However, long-term laid submarine oil pipelines are affected by reciprocating load of water flow, subsidence caused by soil liquefaction, ship\n anchorage operation, etc. In severe cases, it causes overall distortion of a small section of the submarine pipeline, profoundly affecting the safety of the submarine pipeline, which is a significant safety hazard for the health of the marine environment and potentially impacting social and\n economic benefits. Taking the Cezi-Zhenhai submarine pipeline in the sea area between Ningbo and Zhoushan as an example, many deformation defects in the pipeline have been found through internal inspection, and there is a trend of further deterioration. However, the existing external detection\n of submarine pipeline deformation can only collect limited data through mechanical dots for rough inversion. This does not meet the accuracy requirements of repairing existing submarine pipeline clamps. Therefore, we propose a real-time visualization surveying and mapping system for the submarine\n pipeline based on a 3-D laser and a separately designed electronic control system. Our research team performed actual mapping work for the Cezi-Zhenhai submarine pipeline and achieved an excellent mapping control effect. A steady monitoring image and good control effect of moving parts are\n obtained, and the data obtained by 3-D laser processing perfectly represent the actual state of the submarine pipeline. Predictably, the large-scale application of this system will provide a solid technical guarantee for the health of submarine pipelines.","PeriodicalId":49878,"journal":{"name":"Marine Technology Society Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on 3-D Precise Mapping System for Deformation Defects of Submarine Pipeline\",\"authors\":\"P. Zhou, Xiaoqin Peng, Haipei Zhu, Xueyu Ren, P. Lin, Kaichuang Wang, Haonan Li, Zhonghui Zhou, Jia-wang Chen, Jun Li, Xuehua Chen, Guomin Cao, Xuyun Gao\",\"doi\":\"10.4031/mtsj.57.1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The submarine oil pipeline has many advantages, such as large oil transportation capacity, and being fast and economical. However, long-term laid submarine oil pipelines are affected by reciprocating load of water flow, subsidence caused by soil liquefaction, ship\\n anchorage operation, etc. In severe cases, it causes overall distortion of a small section of the submarine pipeline, profoundly affecting the safety of the submarine pipeline, which is a significant safety hazard for the health of the marine environment and potentially impacting social and\\n economic benefits. Taking the Cezi-Zhenhai submarine pipeline in the sea area between Ningbo and Zhoushan as an example, many deformation defects in the pipeline have been found through internal inspection, and there is a trend of further deterioration. However, the existing external detection\\n of submarine pipeline deformation can only collect limited data through mechanical dots for rough inversion. This does not meet the accuracy requirements of repairing existing submarine pipeline clamps. Therefore, we propose a real-time visualization surveying and mapping system for the submarine\\n pipeline based on a 3-D laser and a separately designed electronic control system. Our research team performed actual mapping work for the Cezi-Zhenhai submarine pipeline and achieved an excellent mapping control effect. A steady monitoring image and good control effect of moving parts are\\n obtained, and the data obtained by 3-D laser processing perfectly represent the actual state of the submarine pipeline. Predictably, the large-scale application of this system will provide a solid technical guarantee for the health of submarine pipelines.\",\"PeriodicalId\":49878,\"journal\":{\"name\":\"Marine Technology Society Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Technology Society Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4031/mtsj.57.1.6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Technology Society Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4031/mtsj.57.1.6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Research on 3-D Precise Mapping System for Deformation Defects of Submarine Pipeline
Abstract The submarine oil pipeline has many advantages, such as large oil transportation capacity, and being fast and economical. However, long-term laid submarine oil pipelines are affected by reciprocating load of water flow, subsidence caused by soil liquefaction, ship
anchorage operation, etc. In severe cases, it causes overall distortion of a small section of the submarine pipeline, profoundly affecting the safety of the submarine pipeline, which is a significant safety hazard for the health of the marine environment and potentially impacting social and
economic benefits. Taking the Cezi-Zhenhai submarine pipeline in the sea area between Ningbo and Zhoushan as an example, many deformation defects in the pipeline have been found through internal inspection, and there is a trend of further deterioration. However, the existing external detection
of submarine pipeline deformation can only collect limited data through mechanical dots for rough inversion. This does not meet the accuracy requirements of repairing existing submarine pipeline clamps. Therefore, we propose a real-time visualization surveying and mapping system for the submarine
pipeline based on a 3-D laser and a separately designed electronic control system. Our research team performed actual mapping work for the Cezi-Zhenhai submarine pipeline and achieved an excellent mapping control effect. A steady monitoring image and good control effect of moving parts are
obtained, and the data obtained by 3-D laser processing perfectly represent the actual state of the submarine pipeline. Predictably, the large-scale application of this system will provide a solid technical guarantee for the health of submarine pipelines.
期刊介绍:
The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers, six times a year, on subjects of interest to the society: marine technology, ocean science, marine policy, and education.