电纺纳米纤维在膜技术中的进展

K. Khulbe, T. Matsuura
{"title":"电纺纳米纤维在膜技术中的进展","authors":"K. Khulbe, T. Matsuura","doi":"10.22079/JMSR.2019.105375.1255","DOIUrl":null,"url":null,"abstract":"Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. Electrospinning can generate nanofibers with a number of secondary structures. Surface and/or interior of nanofibers can be functionalized with molecular species or nanoparticles during or after an electrospinning process to obtain desirable results. In a short period, elecrospun nanofiber membranes (ENMs) have gained popularity due to the facile fabrication, interconnectivity and large area/volume ratio. However, ENMs’ pore sizes are intrinsically very large fractions of micrometer to few macrometer, which makes modification of surface chemistry and especially reduction of the ENM pore size indispensable for wider applications of ENMs for membrane separation processes. The modification of nanofibers has been applied widely to give them improved properties. This review paper will provide the progress have recently made on the modification of ENMs to enhance their performance in various membrane separation processes.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"251-268"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Advances of Electrospun Nanofibers in Membrane Technology\",\"authors\":\"K. Khulbe, T. Matsuura\",\"doi\":\"10.22079/JMSR.2019.105375.1255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. Electrospinning can generate nanofibers with a number of secondary structures. Surface and/or interior of nanofibers can be functionalized with molecular species or nanoparticles during or after an electrospinning process to obtain desirable results. In a short period, elecrospun nanofiber membranes (ENMs) have gained popularity due to the facile fabrication, interconnectivity and large area/volume ratio. However, ENMs’ pore sizes are intrinsically very large fractions of micrometer to few macrometer, which makes modification of surface chemistry and especially reduction of the ENM pore size indispensable for wider applications of ENMs for membrane separation processes. The modification of nanofibers has been applied widely to give them improved properties. This review paper will provide the progress have recently made on the modification of ENMs to enhance their performance in various membrane separation processes.\",\"PeriodicalId\":16427,\"journal\":{\"name\":\"Journal of Membrane Science and Research\",\"volume\":\"6 1\",\"pages\":\"251-268\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22079/JMSR.2019.105375.1255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2019.105375.1255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 5

摘要

静电纺丝是一种简单而通用的技术,它依靠表面电荷之间的静电斥力从粘弹性流体中连续提取纳米纤维。静电纺丝可以产生具有许多二级结构的纳米纤维。纳米纤维的表面和/或内部可以在静电纺丝过程中或之后用分子物种或纳米颗粒进行功能化,以获得期望的结果。在短时间内,电纺纳米纤维膜由于其易于制造、互连性和大面积/体积比而广受欢迎。然而,ENM的孔径本质上是微米到几微米的非常大的部分,这使得表面化学的改性,特别是ENM孔径的减小对于ENM在膜分离过程中的更广泛应用是必不可少的。纳米纤维的改性已被广泛应用,以提高其性能。本文将介绍近年来在ENM的改性方面取得的进展,以提高其在各种膜分离过程中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Advances of Electrospun Nanofibers in Membrane Technology
Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. Electrospinning can generate nanofibers with a number of secondary structures. Surface and/or interior of nanofibers can be functionalized with molecular species or nanoparticles during or after an electrospinning process to obtain desirable results. In a short period, elecrospun nanofiber membranes (ENMs) have gained popularity due to the facile fabrication, interconnectivity and large area/volume ratio. However, ENMs’ pore sizes are intrinsically very large fractions of micrometer to few macrometer, which makes modification of surface chemistry and especially reduction of the ENM pore size indispensable for wider applications of ENMs for membrane separation processes. The modification of nanofibers has been applied widely to give them improved properties. This review paper will provide the progress have recently made on the modification of ENMs to enhance their performance in various membrane separation processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science and Research
Journal of Membrane Science and Research Materials Science-Materials Science (miscellaneous)
CiteScore
4.00
自引率
0.00%
发文量
1
审稿时长
8 weeks
期刊介绍: The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.
期刊最新文献
Matrimid®5218/AO-PIM-1 Blend Membranes for Gas Separation Thin film nanocomposite (TFN) membrane comprising Pebax®1657 and porous organic polymers (POP) for favored CO2 separation New challenges and applications of supported liquid membrane systems based on facilitated transport in liquid phase separations of metallic species Effect of multi-staging in vacuum membrane distillation on productivity and temperature polarization Gas permselectivity of hyperbranched polybenzoxazole – silica hybrid membranes treated at different thermal protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1