在人体模型3D打印中使用每像素签名阴影投射的支撑结构层析成像

IF 2.3 4区 管理学 Q1 MATERIALS SCIENCE, TEXTILES Fashion and Textiles Pub Date : 2022-07-05 DOI:10.1186/s40691-022-00290-z
Jin Young Jung, Seonkoo Chee, In Hwan Sul
{"title":"在人体模型3D打印中使用每像素签名阴影投射的支撑结构层析成像","authors":"Jin Young Jung,&nbsp;Seonkoo Chee,&nbsp;In Hwan Sul","doi":"10.1186/s40691-022-00290-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes an advanced algorithm for predicting the optimal orientation in human manikin 3D printing. We can print the manikin mesh data on any scale depending on the user’s needs. Once the 3D printing scale was determined, the manikin data were dissected based on the 3D printer’s maximal printing volume using our previous work. Then, we applied the newly proposed algorithm, designated as “per-pixel signed-shadow casting,” to each dissected manikin part to calculate the volumes of the object and the support structure. Our method classified the original mesh triangles into three groups—alpha, beta, and top-covering—to eliminate the need for special hardware such as graphic cards. The result is shown as a two-dimensional bitmap file, designated as “tomograph”. This tomograph represents the local support structure distribution information on a visual and quantitative basis. Repeating this tomography method for the three rotational axes resulted in a four-dimensional (4D) box-shaped graph. The optimal orientation of any arbitrary object is easily determined from the lowest-valued pixel in the 4D box graph. We applied this proposed method to several basic primitive shapes with different degrees of symmetry and complex shapes, such as the famous “Stanford Bunny”. Finally, the algorithm was applied to human manikins using several printing scales. The theoretical values were compared with those obtained from analytical or g-code-based experimental volumes.</p></div>","PeriodicalId":555,"journal":{"name":"Fashion and Textiles","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-022-00290-z","citationCount":"1","resultStr":"{\"title\":\"Support structure tomography using per-pixel signed shadow casting in human manikin 3D printing\",\"authors\":\"Jin Young Jung,&nbsp;Seonkoo Chee,&nbsp;In Hwan Sul\",\"doi\":\"10.1186/s40691-022-00290-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposes an advanced algorithm for predicting the optimal orientation in human manikin 3D printing. We can print the manikin mesh data on any scale depending on the user’s needs. Once the 3D printing scale was determined, the manikin data were dissected based on the 3D printer’s maximal printing volume using our previous work. Then, we applied the newly proposed algorithm, designated as “per-pixel signed-shadow casting,” to each dissected manikin part to calculate the volumes of the object and the support structure. Our method classified the original mesh triangles into three groups—alpha, beta, and top-covering—to eliminate the need for special hardware such as graphic cards. The result is shown as a two-dimensional bitmap file, designated as “tomograph”. This tomograph represents the local support structure distribution information on a visual and quantitative basis. Repeating this tomography method for the three rotational axes resulted in a four-dimensional (4D) box-shaped graph. The optimal orientation of any arbitrary object is easily determined from the lowest-valued pixel in the 4D box graph. We applied this proposed method to several basic primitive shapes with different degrees of symmetry and complex shapes, such as the famous “Stanford Bunny”. Finally, the algorithm was applied to human manikins using several printing scales. The theoretical values were compared with those obtained from analytical or g-code-based experimental volumes.</p></div>\",\"PeriodicalId\":555,\"journal\":{\"name\":\"Fashion and Textiles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-022-00290-z\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fashion and Textiles\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40691-022-00290-z\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fashion and Textiles","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40691-022-00290-z","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了一种预测人体3D打印最佳方向的先进算法。我们可以根据用户的需要打印任何比例的人体模型网格数据。一旦3D打印规模确定,人体数据是根据3D打印机的最大打印体积使用我们之前的工作解剖。然后,我们将新提出的算法(称为“逐像素符号阴影投射”)应用于每个解剖的人体部分,以计算物体和支撑结构的体积。我们的方法将原始网格三角形分为三组——alpha、beta和顶部覆盖——以消除对特殊硬件(如图形卡)的需求。结果显示为二维位图文件,称为“断层图”。该层析图直观、定量地表示了局部支撑结构的分布信息。对三个旋转轴重复这种层析成像方法,得到一个四维(4D)箱形图。任意物体的最佳方向很容易从四维箱形图中最小像素确定。我们将该方法应用于几种具有不同对称程度和复杂形状的基本原始形状,例如著名的“Stanford Bunny”。最后,将该算法应用于不同打印尺度的人体模型。将理论值与分析或基于g码的实验体积得到的值进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Support structure tomography using per-pixel signed shadow casting in human manikin 3D printing

This study proposes an advanced algorithm for predicting the optimal orientation in human manikin 3D printing. We can print the manikin mesh data on any scale depending on the user’s needs. Once the 3D printing scale was determined, the manikin data were dissected based on the 3D printer’s maximal printing volume using our previous work. Then, we applied the newly proposed algorithm, designated as “per-pixel signed-shadow casting,” to each dissected manikin part to calculate the volumes of the object and the support structure. Our method classified the original mesh triangles into three groups—alpha, beta, and top-covering—to eliminate the need for special hardware such as graphic cards. The result is shown as a two-dimensional bitmap file, designated as “tomograph”. This tomograph represents the local support structure distribution information on a visual and quantitative basis. Repeating this tomography method for the three rotational axes resulted in a four-dimensional (4D) box-shaped graph. The optimal orientation of any arbitrary object is easily determined from the lowest-valued pixel in the 4D box graph. We applied this proposed method to several basic primitive shapes with different degrees of symmetry and complex shapes, such as the famous “Stanford Bunny”. Finally, the algorithm was applied to human manikins using several printing scales. The theoretical values were compared with those obtained from analytical or g-code-based experimental volumes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fashion and Textiles
Fashion and Textiles Business, Management and Accounting-Marketing
CiteScore
4.40
自引率
4.20%
发文量
37
审稿时长
13 weeks
期刊介绍: Fashion and Textiles aims to advance knowledge and to seek new perspectives in the fashion and textiles industry worldwide. We welcome original research articles, reviews, case studies, book reviews and letters to the editor. The scope of the journal includes the following four technical research divisions: Textile Science and Technology: Textile Material Science and Technology; Dyeing and Finishing; Smart and Intelligent Textiles Clothing Science and Technology: Physiology of Clothing/Textile Products; Protective clothing ; Smart and Intelligent clothing; Sportswear; Mass customization ; Apparel manufacturing Economics of Clothing and Textiles/Fashion Business: Management of the Clothing and Textiles Industry; Merchandising; Retailing; Fashion Marketing; Consumer Behavior; Socio-psychology of Fashion Fashion Design and Cultural Study on Fashion: Aesthetic Aspects of Fashion Product or Design Process; Textiles/Clothing/Fashion Design; Fashion Trend; History of Fashion; Costume or Dress; Fashion Theory; Fashion journalism; Fashion exhibition.
期刊最新文献
Opportunities and challenges of smart technology for small independent fashion retailers: a reflexive thematic analysis using the technology-organization-environment framework Date estimation of fabrication and repair of Color garments encouragement banner Enhanced content-based fashion recommendation system through deep ensemble classifier with transfer learning Functional performance of a novel compression top for female throwing athletes The neighborhood advantage: exploring the impact of negotiation costs on transaction satisfaction in local second-hand trading platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1