{"title":"用降尺度技术模拟印度西北部中分辨率蒸散发","authors":"Arvind Dhaloiya, Darshana Duhan, D. Denis, Dharmendra Singh, Mukesh Kumar, Manender Singh","doi":"10.54302/mausam.v74i3.5112","DOIUrl":null,"url":null,"abstract":"The present investigation provides a modeling solution to downscale MODIS-based evapotranspiration (ET) at a 30 m spatial resolution from its original 500 m spatial resolution using meteorological and Landsat 8 (Operational Land Imager, OLI) data by employing downscaling models. The nine indices namely Surface Albedo, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Modified Soil-Adjusted Vegetation Index (MSAVI), Normalized Difference Built-up Index (NDBI), Normalized Difference Water Index (NDWI), Normalized Difference Moisture Index (NDMI), and Normalized Difference Infrared Index for Band 7 (NDIIB7) were calculated from Lansat 8 data at 30 m spatial resolution. The multiple linear regression (MLR) and Least Square Support Vector Machine (LS-SVM) models were developed to generate the relationship between MODIS 500 m ET and Landsat indices at 500 m scale. Further, these develop models were used to estimate 30 m ET based on 30 m Landsat 8 indices. The performance of developed models (MLR and LS-SVM) was carried out using correlation coefficient (CC), Nash-Sutcliffe coefficient (NASH) efficiency, Root Mean Square Error (RMSE) and Normalised Mean Square Error (NMSE). Penman–Monteith (PM) method was used to estimate the ET using observed station data. The results show that lowest ETO was observed in the month of December while it was maximum in the month of May. Using the performances indices, it was found that LS-SVM model slightly outperformed than MLR model. However, the downscaled model overestimates ET in comparison to the Penman-Monteith method. Further, the significant correlation was found between MODIS ET and LS-SVM ET at all the stations.","PeriodicalId":18363,"journal":{"name":"MAUSAM","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling medium resolution evapotranspiration using downscaling techniques in north-western part of India\",\"authors\":\"Arvind Dhaloiya, Darshana Duhan, D. Denis, Dharmendra Singh, Mukesh Kumar, Manender Singh\",\"doi\":\"10.54302/mausam.v74i3.5112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present investigation provides a modeling solution to downscale MODIS-based evapotranspiration (ET) at a 30 m spatial resolution from its original 500 m spatial resolution using meteorological and Landsat 8 (Operational Land Imager, OLI) data by employing downscaling models. The nine indices namely Surface Albedo, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Modified Soil-Adjusted Vegetation Index (MSAVI), Normalized Difference Built-up Index (NDBI), Normalized Difference Water Index (NDWI), Normalized Difference Moisture Index (NDMI), and Normalized Difference Infrared Index for Band 7 (NDIIB7) were calculated from Lansat 8 data at 30 m spatial resolution. The multiple linear regression (MLR) and Least Square Support Vector Machine (LS-SVM) models were developed to generate the relationship between MODIS 500 m ET and Landsat indices at 500 m scale. Further, these develop models were used to estimate 30 m ET based on 30 m Landsat 8 indices. The performance of developed models (MLR and LS-SVM) was carried out using correlation coefficient (CC), Nash-Sutcliffe coefficient (NASH) efficiency, Root Mean Square Error (RMSE) and Normalised Mean Square Error (NMSE). Penman–Monteith (PM) method was used to estimate the ET using observed station data. The results show that lowest ETO was observed in the month of December while it was maximum in the month of May. Using the performances indices, it was found that LS-SVM model slightly outperformed than MLR model. However, the downscaled model overestimates ET in comparison to the Penman-Monteith method. Further, the significant correlation was found between MODIS ET and LS-SVM ET at all the stations.\",\"PeriodicalId\":18363,\"journal\":{\"name\":\"MAUSAM\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAUSAM\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.54302/mausam.v74i3.5112\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAUSAM","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.54302/mausam.v74i3.5112","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1
摘要
本研究利用气象和Landsat 8 (Operational Land Imager, OLI)数据,通过采用降尺度模型,提供了基于modis的蒸散发(ET)从原来的500 m空间分辨率降尺度到30 m空间分辨率的建模解决方案。利用30 m空间分辨率的Lansat 8数据,计算了地表反照率、地表温度、归一化植被指数(NDVI)、土壤校正植被指数(SAVI)、改良土壤校正植被指数(MSAVI)、归一化建筑指数(NDBI)、归一化水分指数(NDWI)、归一化水分指数(NDMI)和7波段归一化红外指数(NDIIB7) 9个指数。建立多元线性回归(MLR)和最小二乘支持向量机(LS-SVM)模型,生成500 m尺度MODIS 500 m ET与Landsat指数之间的关系。此外,利用这些开发模型估算了基于30 m Landsat 8指数的30 m ET。采用相关系数(CC)、NASH - sutcliffe系数(NASH)效率、均方根误差(RMSE)和归一化均方误差(NMSE)对所开发模型(MLR和LS-SVM)的性能进行评估。采用Penman-Monteith (PM)方法,利用台站观测资料估算ET。结果表明:12月ETO最小,5月ETO最大;利用这些性能指标,发现LS-SVM模型的性能略优于MLR模型。然而,与Penman-Monteith方法相比,缩小模型高估了ET。各站MODIS ET与LS-SVM ET存在显著相关。
Modeling medium resolution evapotranspiration using downscaling techniques in north-western part of India
The present investigation provides a modeling solution to downscale MODIS-based evapotranspiration (ET) at a 30 m spatial resolution from its original 500 m spatial resolution using meteorological and Landsat 8 (Operational Land Imager, OLI) data by employing downscaling models. The nine indices namely Surface Albedo, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Modified Soil-Adjusted Vegetation Index (MSAVI), Normalized Difference Built-up Index (NDBI), Normalized Difference Water Index (NDWI), Normalized Difference Moisture Index (NDMI), and Normalized Difference Infrared Index for Band 7 (NDIIB7) were calculated from Lansat 8 data at 30 m spatial resolution. The multiple linear regression (MLR) and Least Square Support Vector Machine (LS-SVM) models were developed to generate the relationship between MODIS 500 m ET and Landsat indices at 500 m scale. Further, these develop models were used to estimate 30 m ET based on 30 m Landsat 8 indices. The performance of developed models (MLR and LS-SVM) was carried out using correlation coefficient (CC), Nash-Sutcliffe coefficient (NASH) efficiency, Root Mean Square Error (RMSE) and Normalised Mean Square Error (NMSE). Penman–Monteith (PM) method was used to estimate the ET using observed station data. The results show that lowest ETO was observed in the month of December while it was maximum in the month of May. Using the performances indices, it was found that LS-SVM model slightly outperformed than MLR model. However, the downscaled model overestimates ET in comparison to the Penman-Monteith method. Further, the significant correlation was found between MODIS ET and LS-SVM ET at all the stations.
期刊介绍:
MAUSAM (Formerly Indian Journal of Meteorology, Hydrology & Geophysics), established in January 1950, is the quarterly research
journal brought out by the India Meteorological Department (IMD). MAUSAM is a medium for publication of original scientific
research work. MAUSAM is a premier scientific research journal published in this part of the world in the fields of Meteorology,
Hydrology & Geophysics. The four issues appear in January, April, July & October.