{"title":"自闭症谱系障碍患者在运动观察期间mu节律抑制下降的计算模型-初步发现","authors":"Dariusz Zapała, D. Mikołajewski","doi":"10.1515/bams-2020-0064","DOIUrl":null,"url":null,"abstract":"Abstract Objectives Autism Spectrum Disorders (ASD) represent developmental conditions with deficits in the cognitive, motor, communication and social domains. It is thought that imitative behaviour may be impaired in children with ASD. The Mirror Neural System (MNS) concept plays an important role in theories explaining the link between action perception, imitation and social decision-making in ASD. Methods In this study, Emergent 7.0.1 software was used to build a computational model of the phenomenon of MNS influence on motion imitation. Seven point populations of Hodgkin–Huxley artificial neurons were used to create a simplified model. Results The model shows pathologically altered processing in the neural network, which may reflect processes observed in ASD due to reduced stimulus attenuation. The model is considered preliminary—further research should test for a minimally significant difference between the states: normal processing and pathological processing. Conclusions The study shows that even a simple computational model can provide insight into the mechanisms underlying the phenomena observed in experimental studies, including in children with ASD.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":"17 1","pages":"95 - 102"},"PeriodicalIF":1.2000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bams-2020-0064","citationCount":"0","resultStr":"{\"title\":\"Computational model of decreased suppression of mu rhythms in patients with Autism Spectrum Disorders during movement observation—preliminary findings\",\"authors\":\"Dariusz Zapała, D. Mikołajewski\",\"doi\":\"10.1515/bams-2020-0064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives Autism Spectrum Disorders (ASD) represent developmental conditions with deficits in the cognitive, motor, communication and social domains. It is thought that imitative behaviour may be impaired in children with ASD. The Mirror Neural System (MNS) concept plays an important role in theories explaining the link between action perception, imitation and social decision-making in ASD. Methods In this study, Emergent 7.0.1 software was used to build a computational model of the phenomenon of MNS influence on motion imitation. Seven point populations of Hodgkin–Huxley artificial neurons were used to create a simplified model. Results The model shows pathologically altered processing in the neural network, which may reflect processes observed in ASD due to reduced stimulus attenuation. The model is considered preliminary—further research should test for a minimally significant difference between the states: normal processing and pathological processing. Conclusions The study shows that even a simple computational model can provide insight into the mechanisms underlying the phenomena observed in experimental studies, including in children with ASD.\",\"PeriodicalId\":42620,\"journal\":{\"name\":\"Bio-Algorithms and Med-Systems\",\"volume\":\"17 1\",\"pages\":\"95 - 102\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bams-2020-0064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-Algorithms and Med-Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bams-2020-0064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bams-2020-0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Computational model of decreased suppression of mu rhythms in patients with Autism Spectrum Disorders during movement observation—preliminary findings
Abstract Objectives Autism Spectrum Disorders (ASD) represent developmental conditions with deficits in the cognitive, motor, communication and social domains. It is thought that imitative behaviour may be impaired in children with ASD. The Mirror Neural System (MNS) concept plays an important role in theories explaining the link between action perception, imitation and social decision-making in ASD. Methods In this study, Emergent 7.0.1 software was used to build a computational model of the phenomenon of MNS influence on motion imitation. Seven point populations of Hodgkin–Huxley artificial neurons were used to create a simplified model. Results The model shows pathologically altered processing in the neural network, which may reflect processes observed in ASD due to reduced stimulus attenuation. The model is considered preliminary—further research should test for a minimally significant difference between the states: normal processing and pathological processing. Conclusions The study shows that even a simple computational model can provide insight into the mechanisms underlying the phenomena observed in experimental studies, including in children with ASD.
期刊介绍:
The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.