细胞和组织时空模式的机械化学原理。

IF 11.4 1区 生物学 Q1 CELL BIOLOGY Annual review of cell and developmental biology Pub Date : 2022-05-13 DOI:10.1146/annurev-cellbio-120420-095337
Anaïs Bailles, E. Gehrels, T. Lecuit
{"title":"细胞和组织时空模式的机械化学原理。","authors":"Anaïs Bailles, E. Gehrels, T. Lecuit","doi":"10.1146/annurev-cellbio-120420-095337","DOIUrl":null,"url":null,"abstract":"Patterns are ubiquitous in living systems and underlie the dynamic organization of cells, tissues, and embryos. Mathematical frameworks have been devised to account for the self-organization of biological patterns, most famously the Turing framework. Patterns can be defined in space, for example, to form stripes; in time, such as during oscillations; or both, to form traveling waves. The formation of these patterns can have different origins: purely chemical, purely mechanical, or a combination of the two. Beyond the variety of molecular implementations of such patterns, we emphasize the unitary principles associated with them, across scales in space and time, within a general mechanochemical framework. We illustrate where such mechanisms of pattern formation arise in biological systems from cellular to tissue scales, with an emphasis on morphogenesis. Our goal is to convey a picture of pattern formation that draws attention to the principles rather than solely specific molecular mechanisms. Expected final online publication date for the Annual Review of Cell and Developmental Biology Volume 38 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Mechanochemical Principles of Spatial and Temporal Patterns in Cells and Tissues.\",\"authors\":\"Anaïs Bailles, E. Gehrels, T. Lecuit\",\"doi\":\"10.1146/annurev-cellbio-120420-095337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patterns are ubiquitous in living systems and underlie the dynamic organization of cells, tissues, and embryos. Mathematical frameworks have been devised to account for the self-organization of biological patterns, most famously the Turing framework. Patterns can be defined in space, for example, to form stripes; in time, such as during oscillations; or both, to form traveling waves. The formation of these patterns can have different origins: purely chemical, purely mechanical, or a combination of the two. Beyond the variety of molecular implementations of such patterns, we emphasize the unitary principles associated with them, across scales in space and time, within a general mechanochemical framework. We illustrate where such mechanisms of pattern formation arise in biological systems from cellular to tissue scales, with an emphasis on morphogenesis. Our goal is to convey a picture of pattern formation that draws attention to the principles rather than solely specific molecular mechanisms. Expected final online publication date for the Annual Review of Cell and Developmental Biology Volume 38 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":7944,\"journal\":{\"name\":\"Annual review of cell and developmental biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of cell and developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-cellbio-120420-095337\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of cell and developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-cellbio-120420-095337","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 21

摘要

模式在生命系统中无处不在,是细胞、组织和胚胎动态组织的基础。已经设计了数学框架来解释生物模式的自组织,最著名的是图灵框架。图案可以在空间中定义,例如,形成条纹;在时间上,例如在振荡期间;以形成行波。这些图案的形成可能有不同的起源:纯粹的化学,纯粹的机械,或者两者的结合。除了这种模式的各种分子实现之外,我们强调在一般的机械化学框架内,在空间和时间尺度上与它们相关的统一原理。我们展示了从细胞到组织尺度的生物系统中这种模式形成机制的产生,重点是形态发生。我们的目标是传达一幅模式形成的画面,吸引人们对原理的关注,而不仅仅是特定的分子机制。《细胞与发育生物学年度评论》第38卷预计最终在线出版日期为2022年10月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanochemical Principles of Spatial and Temporal Patterns in Cells and Tissues.
Patterns are ubiquitous in living systems and underlie the dynamic organization of cells, tissues, and embryos. Mathematical frameworks have been devised to account for the self-organization of biological patterns, most famously the Turing framework. Patterns can be defined in space, for example, to form stripes; in time, such as during oscillations; or both, to form traveling waves. The formation of these patterns can have different origins: purely chemical, purely mechanical, or a combination of the two. Beyond the variety of molecular implementations of such patterns, we emphasize the unitary principles associated with them, across scales in space and time, within a general mechanochemical framework. We illustrate where such mechanisms of pattern formation arise in biological systems from cellular to tissue scales, with an emphasis on morphogenesis. Our goal is to convey a picture of pattern formation that draws attention to the principles rather than solely specific molecular mechanisms. Expected final online publication date for the Annual Review of Cell and Developmental Biology Volume 38 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.50
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Cell and Developmental Biology, established in 1985, comprehensively addresses major advancements in cell and developmental biology. Encompassing the structure, function, and organization of cells, as well as the development and evolution of cells in relation to both single and multicellular organisms, the journal explores models and tools of molecular biology. As of the current volume, the journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, making all articles published under a CC BY license.
期刊最新文献
Plant Cell Wall Loosening by Expansins. Ribosome Assembly and Repair. What Is a Plant Cell Type in the Age of Single-Cell Biology? It's Complicated. The Archaeal Cell Cycle. Microhomology-Mediated End-Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1