可生物降解单宁酸-聚氨酯体系去除水中铅(II)和汞(II)离子的化学计量学评价

IF 1.1 Q4 CHEMISTRY, ANALYTICAL Brazilian Journal of Analytical Chemistry Pub Date : 2022-06-02 DOI:10.30744/brjac.2179-3425.ar-04-2022
Paula Ferreira, A. D. Dos Santos, Adriana Cardoso, Paulo Almeida, J. Ribeiro, Salvador Claro Neto, A. Terezo, A. Siqueira
{"title":"可生物降解单宁酸-聚氨酯体系去除水中铅(II)和汞(II)离子的化学计量学评价","authors":"Paula Ferreira, A. D. Dos Santos, Adriana Cardoso, Paulo Almeida, J. Ribeiro, Salvador Claro Neto, A. Terezo, A. Siqueira","doi":"10.30744/brjac.2179-3425.ar-04-2022","DOIUrl":null,"url":null,"abstract":"The industrialization has brought advances that have enabled a better quality of life for people and improved production stages and business models. However, some impacts still need to be resolved, such as water pollution. Industrial pollutants containing potentially toxic metal ions are expensive for the industry, so studying new materials and new processes has helped solve this problem. Adsorption processes using biodegradable adsorbent materials have been presented as relevant alternatives for reusing metallic ions from water bodies and sewage networks. In this perspective, tannic acid (TA) immobilization in biodegradable polyurethane (PU) foams based on vegetable oil (castor oil) was used to remove metal ions Hg (II) and Pb (II) from water. The preliminary study was carried out in TA's immobilization in PUs, with a 2k order factorial experimental design. The responses were obtained and evaluated by gravimetry and UV-Vis spectroscopy using Central Composite Design (CCD). The molar concentration of 0.1000 mol L-1 by TA solution at pH equal to 7 and 19 hours of contact time was defined as optimal conditions for TA adsorption in the PU. The optimized PU-TA system was evaluated for removing Pb (II) and Hg (II) ions in aqueous solutions, and the tests showed that 59.93% and 51.48% were removed from water, respectively. The use of the PU-TA adsorbent system for removing metals in water can be widely valuable in industrial plants that need water treatment.","PeriodicalId":9115,"journal":{"name":"Brazilian Journal of Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemometric Evaluation of a Biodegradable Tannic Acid-Polyurethane System for the Removal of Pb(II) and Hg(II) Ions from Water\",\"authors\":\"Paula Ferreira, A. D. Dos Santos, Adriana Cardoso, Paulo Almeida, J. Ribeiro, Salvador Claro Neto, A. Terezo, A. Siqueira\",\"doi\":\"10.30744/brjac.2179-3425.ar-04-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The industrialization has brought advances that have enabled a better quality of life for people and improved production stages and business models. However, some impacts still need to be resolved, such as water pollution. Industrial pollutants containing potentially toxic metal ions are expensive for the industry, so studying new materials and new processes has helped solve this problem. Adsorption processes using biodegradable adsorbent materials have been presented as relevant alternatives for reusing metallic ions from water bodies and sewage networks. In this perspective, tannic acid (TA) immobilization in biodegradable polyurethane (PU) foams based on vegetable oil (castor oil) was used to remove metal ions Hg (II) and Pb (II) from water. The preliminary study was carried out in TA's immobilization in PUs, with a 2k order factorial experimental design. The responses were obtained and evaluated by gravimetry and UV-Vis spectroscopy using Central Composite Design (CCD). The molar concentration of 0.1000 mol L-1 by TA solution at pH equal to 7 and 19 hours of contact time was defined as optimal conditions for TA adsorption in the PU. The optimized PU-TA system was evaluated for removing Pb (II) and Hg (II) ions in aqueous solutions, and the tests showed that 59.93% and 51.48% were removed from water, respectively. The use of the PU-TA adsorbent system for removing metals in water can be widely valuable in industrial plants that need water treatment.\",\"PeriodicalId\":9115,\"journal\":{\"name\":\"Brazilian Journal of Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Analytical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30744/brjac.2179-3425.ar-04-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30744/brjac.2179-3425.ar-04-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

工业化带来的进步提高了人们的生活质量,改善了生产阶段和商业模式。然而,一些影响仍然需要解决,比如水污染。含有潜在有毒金属离子的工业污染物对工业来说是昂贵的,因此研究新材料和新工艺有助于解决这一问题。利用生物可降解吸附材料的吸附工艺已被提出作为水体和污水管网中金属离子再利用的相关替代方法。从这个角度来看,单宁酸(TA)固定在植物油(蓖麻油)为基础的可生物降解聚氨酯(PU)泡沫中,用于去除水中的金属离子Hg (II)和Pb (II)。采用2k阶乘实验设计,对TA在pu内的固定化进行初步研究。采用中心复合设计(CCD),采用重量法和紫外-可见光谱法对反应进行了分析和评价。确定TA溶液的摩尔浓度为0.1000 mol L-1, pH = 7,接触时间为19 h为PU吸附TA的最佳条件。优化后的PU-TA体系对水中Pb (II)和Hg (II)离子的去除率分别为59.93%和51.48%。在需要水处理的工业装置中,使用PU-TA吸附剂系统去除水中的金属具有广泛的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemometric Evaluation of a Biodegradable Tannic Acid-Polyurethane System for the Removal of Pb(II) and Hg(II) Ions from Water
The industrialization has brought advances that have enabled a better quality of life for people and improved production stages and business models. However, some impacts still need to be resolved, such as water pollution. Industrial pollutants containing potentially toxic metal ions are expensive for the industry, so studying new materials and new processes has helped solve this problem. Adsorption processes using biodegradable adsorbent materials have been presented as relevant alternatives for reusing metallic ions from water bodies and sewage networks. In this perspective, tannic acid (TA) immobilization in biodegradable polyurethane (PU) foams based on vegetable oil (castor oil) was used to remove metal ions Hg (II) and Pb (II) from water. The preliminary study was carried out in TA's immobilization in PUs, with a 2k order factorial experimental design. The responses were obtained and evaluated by gravimetry and UV-Vis spectroscopy using Central Composite Design (CCD). The molar concentration of 0.1000 mol L-1 by TA solution at pH equal to 7 and 19 hours of contact time was defined as optimal conditions for TA adsorption in the PU. The optimized PU-TA system was evaluated for removing Pb (II) and Hg (II) ions in aqueous solutions, and the tests showed that 59.93% and 51.48% were removed from water, respectively. The use of the PU-TA adsorbent system for removing metals in water can be widely valuable in industrial plants that need water treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
46
期刊介绍: BrJAC is dedicated to the diffusion of significant and original knowledge in all branches of Analytical Chemistry, and is addressed to professionals involved in science, technology and innovation projects at universities, research centers and in industry.
期刊最新文献
Cork-Activated Carbon as a Sorptive Phase for Microextraction of Emerging Contaminants in Water Samples Development and Validation of an Analytical Method for the Determination of Fipronil and its Degradation Products in 28 Organic and Regular Honey Samples by GC-ECD Electrochemical Biosensors for the Detection of Viruses: Must-Have Products or Just Science for Publication? Mineral Composition of Rice, Carrots, and Chayote after Microwave-Assisted Decomposition using Diluted Nitric Acid Professor José Luis Capelo Martinez, a researcher who believes that science and technology have a direct and tangible impact on human well-being kindly granted BrJAC an interview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1