多孔功能梯度夹层板的静挠度和应力分布

IF 2.1 3区 工程技术 Q2 ENGINEERING, CIVIL Smart Structures and Systems Pub Date : 2021-09-01 DOI:10.12989/SSS.2021.28.3.343
L. Hadji, A. Tounsi
{"title":"多孔功能梯度夹层板的静挠度和应力分布","authors":"L. Hadji, A. Tounsi","doi":"10.12989/SSS.2021.28.3.343","DOIUrl":null,"url":null,"abstract":"In this paper a higher-order shear deformation plate theory is presented to investigate the stress distribution and static deflections of functionally graded sandwich plates with porosity effects. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. By dividing the transverse displacement into the bending and shear parts and making further assumptions, the number of unknowns and equations of motion of the present theory is reduced a and hence makes them simple to use. The functionally graded materials (FGM) used in plates contain probably a porosity volume fraction which needs taking into account this aspect of imperfection in the mechanical bahavior of such structures. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG sandwich plate. The governing equations of the problem are derived by using the principle of virtual work. In the solution of the governing equations, the Navier procedure is used for the simply supported plate. In the porosity effect, four different porosity types are used for functionally graded sandwich plates. In the numerical results, the effects of the porosity parameters, porosity types and aspect ratio of plates on the normal stress, shear stress and static deflections of the functionally graded sandwich plates are presented and discussed. Also, some comparison studies are performed in order to validate the present formulations.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":"28 1","pages":"343"},"PeriodicalIF":2.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Static deflections and stress distribution of functionally graded sandwich plates with porosity\",\"authors\":\"L. Hadji, A. Tounsi\",\"doi\":\"10.12989/SSS.2021.28.3.343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a higher-order shear deformation plate theory is presented to investigate the stress distribution and static deflections of functionally graded sandwich plates with porosity effects. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. By dividing the transverse displacement into the bending and shear parts and making further assumptions, the number of unknowns and equations of motion of the present theory is reduced a and hence makes them simple to use. The functionally graded materials (FGM) used in plates contain probably a porosity volume fraction which needs taking into account this aspect of imperfection in the mechanical bahavior of such structures. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG sandwich plate. The governing equations of the problem are derived by using the principle of virtual work. In the solution of the governing equations, the Navier procedure is used for the simply supported plate. In the porosity effect, four different porosity types are used for functionally graded sandwich plates. In the numerical results, the effects of the porosity parameters, porosity types and aspect ratio of plates on the normal stress, shear stress and static deflections of the functionally graded sandwich plates are presented and discussed. Also, some comparison studies are performed in order to validate the present formulations.\",\"PeriodicalId\":51155,\"journal\":{\"name\":\"Smart Structures and Systems\",\"volume\":\"28 1\",\"pages\":\"343\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Structures and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SSS.2021.28.3.343\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.28.3.343","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种高阶剪切变形板理论,研究了具有孔隙率效应的功能梯度夹层板的应力分布和静态挠度。本理论的位移场是基于平面内位移随板厚度的非线性变化来选择的。通过将横向位移划分为弯曲和剪切部分并进行进一步的假设,本理论的未知数和运动方程的数量减少了a,从而使其易于使用。板中使用的功能梯度材料(FGM)可能含有孔隙率体积分数,这需要考虑到此类结构的机械性能中的缺陷方面。本工作旨在研究孔隙率的分布形式对简支FG夹芯板弯曲的影响。利用虚功原理导出了该问题的控制方程。在控制方程的求解中,Navier程序用于简支板。在孔隙率效应中,功能梯度夹层板使用了四种不同的孔隙率类型。在数值计算中,给出并讨论了孔隙率参数、孔隙率类型和板的纵横比对功能梯度夹层板的法向应力、剪切应力和静态挠度的影响。此外,还进行了一些比较研究,以验证目前的配方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Static deflections and stress distribution of functionally graded sandwich plates with porosity
In this paper a higher-order shear deformation plate theory is presented to investigate the stress distribution and static deflections of functionally graded sandwich plates with porosity effects. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. By dividing the transverse displacement into the bending and shear parts and making further assumptions, the number of unknowns and equations of motion of the present theory is reduced a and hence makes them simple to use. The functionally graded materials (FGM) used in plates contain probably a porosity volume fraction which needs taking into account this aspect of imperfection in the mechanical bahavior of such structures. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG sandwich plate. The governing equations of the problem are derived by using the principle of virtual work. In the solution of the governing equations, the Navier procedure is used for the simply supported plate. In the porosity effect, four different porosity types are used for functionally graded sandwich plates. In the numerical results, the effects of the porosity parameters, porosity types and aspect ratio of plates on the normal stress, shear stress and static deflections of the functionally graded sandwich plates are presented and discussed. Also, some comparison studies are performed in order to validate the present formulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Structures and Systems
Smart Structures and Systems 工程技术-工程:机械
CiteScore
6.50
自引率
8.60%
发文量
0
审稿时长
9 months
期刊介绍: An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include: Sensors/Actuators(Materials/devices/ informatics/networking) Structural Health Monitoring and Control Diagnosis/Prognosis Life Cycle Engineering(planning/design/ maintenance/renewal) and related areas.
期刊最新文献
Analysis, optimization and control of an adaptive tuned vibration absorber featuring magnetoactive materials Numerical investigation on cyclic behaviour of superelastic shape memory alloy (SMA) dampers Hybrid fragility curve derivation of buildings based on post-earthquake reconnaissance data A corrosion threshold-controllable sensing system of Fe-C coated long period fiber gratings for life-cycle mass loss measurement of steel bars with strain and temperature compensation Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1